Gerrit Wilms, Kevin Schofield, Shayna Maddern, Christopher Foley, Yeng Shaw, Breland Smith, L. Emilia Basantes, Katharina Schwandt, Aaron Babendreyer, Timothy Chavez, Nicholas McKee, Vijay Gokhale, Sebastian Kallabis, Felix Meissner, Samantha N. Rokey, Travis Dunckley, William R. Montfort, Walter Becker, Christopher Hulme
{"title":"Discovery and Functional Characterization of a Potent, Selective, and Metabolically Stable PROTAC of the Protein Kinases DYRK1A and DYRK1B","authors":"Gerrit Wilms, Kevin Schofield, Shayna Maddern, Christopher Foley, Yeng Shaw, Breland Smith, L. Emilia Basantes, Katharina Schwandt, Aaron Babendreyer, Timothy Chavez, Nicholas McKee, Vijay Gokhale, Sebastian Kallabis, Felix Meissner, Samantha N. Rokey, Travis Dunckley, William R. Montfort, Walter Becker, Christopher Hulme","doi":"10.1021/acs.jmedchem.4c01130","DOIUrl":null,"url":null,"abstract":"Small-molecule-induced protein degradation has emerged as a promising pharmacological modality for inactivating disease-relevant protein kinases. DYRK1A and DYRK1B are closely related protein kinases that are involved in pathological processes such as neurodegeneration, cancer development, and adaptive immune homeostasis. Herein, we report the development of the first DYRK1 proteolysis targeting chimeras (PROTACs) that combine a new ATP-competitive DYRK1 inhibitor with ligands for the E3 ubiquitin ligase component cereblon (CRBN) to induce ubiquitination and subsequent proteasomal degradation of DYRK1A and DYRK1B. The lead compound (DYR684) promoted fast, efficient, potent, and selective degradation of DYRK1A in cell-based assays. Interestingly, an enzymatically inactive splicing variant of DYRK1B (p65) resisted degradation. Compared to competitive kinase inhibition, targeted degradation of DYRK1 by DYR684 provided improved suppression of downstream signaling. Collectively, our results identify DYRKs as viable targets for PROTAC-mediated degradation and qualify DYR684 as a useful chemical probe for DYRK1A and DYRK1B.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"56 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c01130","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Small-molecule-induced protein degradation has emerged as a promising pharmacological modality for inactivating disease-relevant protein kinases. DYRK1A and DYRK1B are closely related protein kinases that are involved in pathological processes such as neurodegeneration, cancer development, and adaptive immune homeostasis. Herein, we report the development of the first DYRK1 proteolysis targeting chimeras (PROTACs) that combine a new ATP-competitive DYRK1 inhibitor with ligands for the E3 ubiquitin ligase component cereblon (CRBN) to induce ubiquitination and subsequent proteasomal degradation of DYRK1A and DYRK1B. The lead compound (DYR684) promoted fast, efficient, potent, and selective degradation of DYRK1A in cell-based assays. Interestingly, an enzymatically inactive splicing variant of DYRK1B (p65) resisted degradation. Compared to competitive kinase inhibition, targeted degradation of DYRK1 by DYR684 provided improved suppression of downstream signaling. Collectively, our results identify DYRKs as viable targets for PROTAC-mediated degradation and qualify DYR684 as a useful chemical probe for DYRK1A and DYRK1B.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.