Enhancing HER catalyst screening of modified MXenes through DFT and machine learning integration

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
AIChE Journal Pub Date : 2024-09-30 DOI:10.1002/aic.18618
Hui Xu, Wenhao Lv, Shaojie Yang, Shuna Yang, Yawei Liu, Feng Huo
{"title":"Enhancing HER catalyst screening of modified MXenes through DFT and machine learning integration","authors":"Hui Xu, Wenhao Lv, Shaojie Yang, Shuna Yang, Yawei Liu, Feng Huo","doi":"10.1002/aic.18618","DOIUrl":null,"url":null,"abstract":"MXenes doped with non-metallic and transition metal elements exhibit remarkable potential as catalysts in the hydrogen energy. Nonetheless, efficiently identifying viable materials from a vast array of candidates remains a formidable challenge. Here, we conducted density functional theory (DFT) calculations to obtain the hydrogen adsorption free energy (<span data-altimg=\"/cms/asset/55280795-4fbc-497a-95da-89a1c82bc57a/aic18618-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"3\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/aic18618-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"3\" data-semantic-content=\"0\" data-semantic- data-semantic-role=\"prefix operator\" data-semantic-speech=\"increment upper G Subscript normal upper H\" data-semantic-type=\"prefixop\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,∆\" data-semantic-parent=\"4\" data-semantic-role=\"prefix operator\" data-semantic-type=\"operator\" rspace=\"3\" space=\"3\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"1,2\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00011541:media:aic18618:aic18618-math-0001\" display=\"inline\" location=\"graphic/aic18618-math-0001.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"3\" data-semantic-content=\"0\" data-semantic-role=\"prefix operator\" data-semantic-speech=\"increment upper G Subscript normal upper H\" data-semantic-type=\"prefixop\"><mo data-semantic-=\"\" data-semantic-operator=\"prefixop,∆\" data-semantic-parent=\"4\" data-semantic-role=\"prefix operator\" data-semantic-type=\"operator\">∆</mo><msub data-semantic-=\"\" data-semantic-children=\"1,2\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">G</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">H</mi></msub></mrow>$$ \\Delta {G}_{\\mathrm{H}} $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>) of 78 types of doped TiVCO<sub>2</sub> MXene catalysts. Then we employed machine learning models to categorize the <span data-altimg=\"/cms/asset/c62b3212-19eb-4ce4-938c-0ced768469e5/aic18618-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"4\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/aic18618-math-0002.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"3\" data-semantic-content=\"0\" data-semantic- data-semantic-role=\"prefix operator\" data-semantic-speech=\"increment upper G Subscript normal upper H\" data-semantic-type=\"prefixop\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,∆\" data-semantic-parent=\"4\" data-semantic-role=\"prefix operator\" data-semantic-type=\"operator\" rspace=\"3\" space=\"3\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"1,2\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00011541:media:aic18618:aic18618-math-0002\" display=\"inline\" location=\"graphic/aic18618-math-0002.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"3\" data-semantic-content=\"0\" data-semantic-role=\"prefix operator\" data-semantic-speech=\"increment upper G Subscript normal upper H\" data-semantic-type=\"prefixop\"><mo data-semantic-=\"\" data-semantic-operator=\"prefixop,∆\" data-semantic-parent=\"4\" data-semantic-role=\"prefix operator\" data-semantic-type=\"operator\">∆</mo><msub data-semantic-=\"\" data-semantic-children=\"1,2\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">G</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">H</mi></msub></mrow>$$ \\Delta {G}_{\\mathrm{H}} $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> values of the 78 catalysts, resulted in an accurate model which only uses 7 readily available elemental features but has an impressive accuracy of 93.6%. Our model successfully predicting 5 TiVCO<sub>2</sub> catalysts doped with S with superior performance, subsequently validated through DFT calculations. This classification methodology not only evaluates the range of <span data-altimg=\"/cms/asset/c01a44cb-1004-4461-a663-508436342062/aic18618-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"5\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/aic18618-math-0003.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"3\" data-semantic-content=\"0\" data-semantic- data-semantic-role=\"prefix operator\" data-semantic-speech=\"increment upper G Subscript normal upper H\" data-semantic-type=\"prefixop\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,∆\" data-semantic-parent=\"4\" data-semantic-role=\"prefix operator\" data-semantic-type=\"operator\" rspace=\"3\" space=\"3\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"1,2\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00011541:media:aic18618:aic18618-math-0003\" display=\"inline\" location=\"graphic/aic18618-math-0003.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"3\" data-semantic-content=\"0\" data-semantic-role=\"prefix operator\" data-semantic-speech=\"increment upper G Subscript normal upper H\" data-semantic-type=\"prefixop\"><mo data-semantic-=\"\" data-semantic-operator=\"prefixop,∆\" data-semantic-parent=\"4\" data-semantic-role=\"prefix operator\" data-semantic-type=\"operator\">∆</mo><msub data-semantic-=\"\" data-semantic-children=\"1,2\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">G</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">H</mi></msub></mrow>$$ \\Delta {G}_{\\mathrm{H}} $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> effectively but also facilitates qualitative prediction and screening of catalysts, presenting a novel approach for catalytic systems with limited available data.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"57 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18618","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

MXenes doped with non-metallic and transition metal elements exhibit remarkable potential as catalysts in the hydrogen energy. Nonetheless, efficiently identifying viable materials from a vast array of candidates remains a formidable challenge. Here, we conducted density functional theory (DFT) calculations to obtain the hydrogen adsorption free energy (GH$$ \Delta {G}_{\mathrm{H}} $$) of 78 types of doped TiVCO2 MXene catalysts. Then we employed machine learning models to categorize the GH$$ \Delta {G}_{\mathrm{H}} $$ values of the 78 catalysts, resulted in an accurate model which only uses 7 readily available elemental features but has an impressive accuracy of 93.6%. Our model successfully predicting 5 TiVCO2 catalysts doped with S with superior performance, subsequently validated through DFT calculations. This classification methodology not only evaluates the range of GH$$ \Delta {G}_{\mathrm{H}} $$ effectively but also facilitates qualitative prediction and screening of catalysts, presenting a novel approach for catalytic systems with limited available data.
通过 DFT 与机器学习的整合,加强对改性 MXenes 的 HER 催化剂筛选
掺杂了非金属和过渡金属元素的二氧杂环烯作为氢能催化剂具有非凡的潜力。然而,从大量候选材料中有效识别可行材料仍然是一项艰巨的挑战。在此,我们进行了密度泛函理论(DFT)计算,以获得 78 种掺杂 TiVCO2 MXene 催化剂的氢吸附自由能 (∆GH$$ \Delta {G}_{\mathrm{H}} $$)。然后,我们采用机器学习模型对 78 种掺杂 TiVCO2 MXene 催化剂的 ∆GH$$ \Delta {G}_{mathrm{H}}$ 值进行分类。$$ 值,从而建立了一个精确的模型,该模型仅使用了 7 种现成的元素特征,但准确率却高达 93.6%,令人印象深刻。我们的模型成功预测了 5 种掺杂 S 的 TiVCO2 催化剂的优异性能,随后通过 DFT 计算进行了验证。这种分类方法不仅能有效地评估 ∆GH$$ \Delta {G}_{mathrm{H}} 的范围,还能促进催化剂性能的预测。$$ 的范围,而且还有助于对催化剂进行定性预测和筛选,为可用数据有限的催化系统提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信