{"title":"Enhancing HER catalyst screening of modified MXenes through DFT and machine learning integration","authors":"Hui Xu, Wenhao Lv, Shaojie Yang, Shuna Yang, Yawei Liu, Feng Huo","doi":"10.1002/aic.18618","DOIUrl":null,"url":null,"abstract":"MXenes doped with non-metallic and transition metal elements exhibit remarkable potential as catalysts in the hydrogen energy. Nonetheless, efficiently identifying viable materials from a vast array of candidates remains a formidable challenge. Here, we conducted density functional theory (DFT) calculations to obtain the hydrogen adsorption free energy (<span data-altimg=\"/cms/asset/55280795-4fbc-497a-95da-89a1c82bc57a/aic18618-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"3\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/aic18618-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"3\" data-semantic-content=\"0\" data-semantic- data-semantic-role=\"prefix operator\" data-semantic-speech=\"increment upper G Subscript normal upper H\" data-semantic-type=\"prefixop\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,∆\" data-semantic-parent=\"4\" data-semantic-role=\"prefix operator\" data-semantic-type=\"operator\" rspace=\"3\" space=\"3\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"1,2\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00011541:media:aic18618:aic18618-math-0001\" display=\"inline\" location=\"graphic/aic18618-math-0001.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"3\" data-semantic-content=\"0\" data-semantic-role=\"prefix operator\" data-semantic-speech=\"increment upper G Subscript normal upper H\" data-semantic-type=\"prefixop\"><mo data-semantic-=\"\" data-semantic-operator=\"prefixop,∆\" data-semantic-parent=\"4\" data-semantic-role=\"prefix operator\" data-semantic-type=\"operator\">∆</mo><msub data-semantic-=\"\" data-semantic-children=\"1,2\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">G</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">H</mi></msub></mrow>$$ \\Delta {G}_{\\mathrm{H}} $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>) of 78 types of doped TiVCO<sub>2</sub> MXene catalysts. Then we employed machine learning models to categorize the <span data-altimg=\"/cms/asset/c62b3212-19eb-4ce4-938c-0ced768469e5/aic18618-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"4\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/aic18618-math-0002.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"3\" data-semantic-content=\"0\" data-semantic- data-semantic-role=\"prefix operator\" data-semantic-speech=\"increment upper G Subscript normal upper H\" data-semantic-type=\"prefixop\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,∆\" data-semantic-parent=\"4\" data-semantic-role=\"prefix operator\" data-semantic-type=\"operator\" rspace=\"3\" space=\"3\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"1,2\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00011541:media:aic18618:aic18618-math-0002\" display=\"inline\" location=\"graphic/aic18618-math-0002.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"3\" data-semantic-content=\"0\" data-semantic-role=\"prefix operator\" data-semantic-speech=\"increment upper G Subscript normal upper H\" data-semantic-type=\"prefixop\"><mo data-semantic-=\"\" data-semantic-operator=\"prefixop,∆\" data-semantic-parent=\"4\" data-semantic-role=\"prefix operator\" data-semantic-type=\"operator\">∆</mo><msub data-semantic-=\"\" data-semantic-children=\"1,2\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">G</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">H</mi></msub></mrow>$$ \\Delta {G}_{\\mathrm{H}} $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> values of the 78 catalysts, resulted in an accurate model which only uses 7 readily available elemental features but has an impressive accuracy of 93.6%. Our model successfully predicting 5 TiVCO<sub>2</sub> catalysts doped with S with superior performance, subsequently validated through DFT calculations. This classification methodology not only evaluates the range of <span data-altimg=\"/cms/asset/c01a44cb-1004-4461-a663-508436342062/aic18618-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"5\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/aic18618-math-0003.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"3\" data-semantic-content=\"0\" data-semantic- data-semantic-role=\"prefix operator\" data-semantic-speech=\"increment upper G Subscript normal upper H\" data-semantic-type=\"prefixop\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,∆\" data-semantic-parent=\"4\" data-semantic-role=\"prefix operator\" data-semantic-type=\"operator\" rspace=\"3\" space=\"3\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"1,2\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c></mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00011541:media:aic18618:aic18618-math-0003\" display=\"inline\" location=\"graphic/aic18618-math-0003.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"3\" data-semantic-content=\"0\" data-semantic-role=\"prefix operator\" data-semantic-speech=\"increment upper G Subscript normal upper H\" data-semantic-type=\"prefixop\"><mo data-semantic-=\"\" data-semantic-operator=\"prefixop,∆\" data-semantic-parent=\"4\" data-semantic-role=\"prefix operator\" data-semantic-type=\"operator\">∆</mo><msub data-semantic-=\"\" data-semantic-children=\"1,2\" data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">G</mi><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" mathvariant=\"normal\">H</mi></msub></mrow>$$ \\Delta {G}_{\\mathrm{H}} $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> effectively but also facilitates qualitative prediction and screening of catalysts, presenting a novel approach for catalytic systems with limited available data.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"57 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18618","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
MXenes doped with non-metallic and transition metal elements exhibit remarkable potential as catalysts in the hydrogen energy. Nonetheless, efficiently identifying viable materials from a vast array of candidates remains a formidable challenge. Here, we conducted density functional theory (DFT) calculations to obtain the hydrogen adsorption free energy () of 78 types of doped TiVCO2 MXene catalysts. Then we employed machine learning models to categorize the values of the 78 catalysts, resulted in an accurate model which only uses 7 readily available elemental features but has an impressive accuracy of 93.6%. Our model successfully predicting 5 TiVCO2 catalysts doped with S with superior performance, subsequently validated through DFT calculations. This classification methodology not only evaluates the range of effectively but also facilitates qualitative prediction and screening of catalysts, presenting a novel approach for catalytic systems with limited available data.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.