Clay Nanosheet-Based Nanocomposite Supramolecular Hydrogel Enabling Rapid, Reversible Phase Transition Only with Visible Light

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ye Fu, Kou Okuro, Prof. Jiandong Ding, Prof. Takuzo Aida
{"title":"Clay Nanosheet-Based Nanocomposite Supramolecular Hydrogel Enabling Rapid, Reversible Phase Transition Only with Visible Light","authors":"Ye Fu,&nbsp;Kou Okuro,&nbsp;Prof. Jiandong Ding,&nbsp;Prof. Takuzo Aida","doi":"10.1002/anie.202416541","DOIUrl":null,"url":null,"abstract":"<p>High mechanical properties and rapid sol/gel phase transition are mutually exclusive in the hydrogels reported to date, most likely because the 3D crosslinked networks of mechanically robust hydrogels comprise bundled thick fibers that are not rapidly dissociable or formable. Herein, we report a visible light-responsive hydrogel that showed a rapid, reversible sol/gel phase transition despite its relatively high mechanical properties (storage modulus ~10<sup>3</sup> Pa). To construct its 3D crosslinked network, we used a design strategy analogous to that employed for our highly water-rich yet mechanically robust nanocomposite supramolecular hydrogel (“aqua material”). In this case, multiple poly(ethylene glycol) chains carrying <i>ortho</i>-tetramethoxyazobenzene termini (<sup>Azo</sup>PEG) were noncovalently crosslinked by clay nanosheets (CNSs) with surface-immobilized <i>β</i>-cyclodextrin units using their seven guanidinium ion (Gu<sup>+</sup>) pendants (<sup>Gu</sup>CD) via a multivalent salt-bridge. When exposed to visible light at 625 and 450 nm, the azobenzene termini isomerized from <i>trans</i>-to-<i>cis</i> and <i>cis</i>-to-<i>trans</i>, respectively, and were detached from and attached to the surface-immobilized <sup>Gu</sup>CD units. The advantage of this CNS-based nanocomposite supramolecular system is its simple 3D network structure, which forms and breaks rapidly without slow chain entangling and disentangling processes.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 4","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202416541","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High mechanical properties and rapid sol/gel phase transition are mutually exclusive in the hydrogels reported to date, most likely because the 3D crosslinked networks of mechanically robust hydrogels comprise bundled thick fibers that are not rapidly dissociable or formable. Herein, we report a visible light-responsive hydrogel that showed a rapid, reversible sol/gel phase transition despite its relatively high mechanical properties (storage modulus ~103 Pa). To construct its 3D crosslinked network, we used a design strategy analogous to that employed for our highly water-rich yet mechanically robust nanocomposite supramolecular hydrogel (“aqua material”). In this case, multiple poly(ethylene glycol) chains carrying ortho-tetramethoxyazobenzene termini (AzoPEG) were noncovalently crosslinked by clay nanosheets (CNSs) with surface-immobilized β-cyclodextrin units using their seven guanidinium ion (Gu+) pendants (GuCD) via a multivalent salt-bridge. When exposed to visible light at 625 and 450 nm, the azobenzene termini isomerized from trans-to-cis and cis-to-trans, respectively, and were detached from and attached to the surface-immobilized GuCD units. The advantage of this CNS-based nanocomposite supramolecular system is its simple 3D network structure, which forms and breaks rapidly without slow chain entangling and disentangling processes.

Abstract Image

基于粘土纳米片的纳米复合超分子水凝胶,只需可见光即可实现快速、可逆的相变
迄今为止所报道的水凝胶中,高机械性能和快速溶胶/凝胶相变是相互排斥的,这很可能是因为机械强度高的水凝胶的三维交联网络由成束的粗纤维组成,这些纤维不能快速解离或成型。在此,我们报告了一种可见光响应水凝胶,尽管它具有相对较高的机械性能(储存模量约为 1000 Pa),但却表现出快速、可逆的溶胶/凝胶相变。为了构建这种三维交联网络,我们采用了一种类似于高富水但具有机械坚固性的纳米复合超分子水凝胶("水材料")的设计策略。在这种情况下,粘土纳米片(CNS)利用其七个胍离子(Gu+)挂件(GuCD)通过多价盐桥与表面固定的β-环糊精单元进行非共价交联。当暴露在 625 纳米和 450 纳米的可见光下时,偶氮苯端部分别从反式到顺式和顺式到反式发生异构化,并从表面固定的 GuCD 单元分离和附着。这种基于 CNS 的纳米复合超分子体系的优势在于其简单的三维网络结构,可快速形成和断裂,无需缓慢的链缠结和解缠结过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信