Inverse ceria-nickel catalyst for enhanced C–O bond hydrogenolysis of biomass and polyether

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zelun Zhao, Guang Gao, Yongjie Xi, Jia Wang, Peng Sun, Qi Liu, Chengyang Li, Zhiwei Huang, Fuwei Li
{"title":"Inverse ceria-nickel catalyst for enhanced C–O bond hydrogenolysis of biomass and polyether","authors":"Zelun Zhao, Guang Gao, Yongjie Xi, Jia Wang, Peng Sun, Qi Liu, Chengyang Li, Zhiwei Huang, Fuwei Li","doi":"10.1038/s41467-024-52704-9","DOIUrl":null,"url":null,"abstract":"<p>Regulating interfacial electronic structure of oxide-metal composite catalyst for the selective transformation of biomass or plastic waste into high-value chemicals through specific C–O bond scission is still challenging due to the presence of multiple reducible bonds and low catalytic activity. Herein, we find that the inverse catalyst of 4CeO<sub>x</sub>/Ni can efficiently transform various lignocellulose derivatives and polyether into the corresponding value-added hydroxyl-containing chemicals with activity enhancement (up to 36.5-fold increase in rate) compared to the conventional metal/oxide supported catalyst. In situ experiments and theoretical calculations reveal the electron-rich interfacial Ce and Ni species are responsible for the selective adsorption of C–O bond and efficient generation of H<sup>δ−</sup> species, respectively, which synergistic facilitate cleavage of C–O bond and subsequent hydrogenation. This work advances the fundamental understanding of interfacial electronic interaction over inverse catalyst and provides a promising catalyst design strategy for efficient transformation of C–O bond.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52704-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Regulating interfacial electronic structure of oxide-metal composite catalyst for the selective transformation of biomass or plastic waste into high-value chemicals through specific C–O bond scission is still challenging due to the presence of multiple reducible bonds and low catalytic activity. Herein, we find that the inverse catalyst of 4CeOx/Ni can efficiently transform various lignocellulose derivatives and polyether into the corresponding value-added hydroxyl-containing chemicals with activity enhancement (up to 36.5-fold increase in rate) compared to the conventional metal/oxide supported catalyst. In situ experiments and theoretical calculations reveal the electron-rich interfacial Ce and Ni species are responsible for the selective adsorption of C–O bond and efficient generation of Hδ− species, respectively, which synergistic facilitate cleavage of C–O bond and subsequent hydrogenation. This work advances the fundamental understanding of interfacial electronic interaction over inverse catalyst and provides a promising catalyst design strategy for efficient transformation of C–O bond.

Abstract Image

用于增强生物质和聚醚 C-O 键氢解的反相铈镍催化剂
由于存在多个可还原键且催化活性较低,因此调节氧化物-金属复合催化剂的界面电子结构,通过特定的 C-O 键裂解将生物质或塑料废弃物选择性转化为高价值化学品仍具有挑战性。在本文中,我们发现 4CeOx/Ni 的反相催化剂可以高效地将各种木质纤维素衍生物和聚醚转化为相应的含羟基的高附加值化学品,与传统的金属/氧化物支撑催化剂相比,活性提高了(速率提高了 36.5 倍)。原位实验和理论计算显示,富电子界面 Ce 和 Ni 物种分别负责选择性吸附 C-O 键和高效生成 Hδ- 物种,它们协同促进了 C-O 键的裂解和随后的氢化反应。这项研究加深了人们对反相催化剂界面电子相互作用的基本认识,并为 C-O 键的高效转化提供了一种前景广阔的催化剂设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信