High-Performance Black Copolymers Enabling Full Spectrum Control in Electrochromic Devices

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Dinghui Chen, Zizheng Tong, Qiushi Rao, Xingchen Liu, Hong Meng, Wei Huang
{"title":"High-Performance Black Copolymers Enabling Full Spectrum Control in Electrochromic Devices","authors":"Dinghui Chen, Zizheng Tong, Qiushi Rao, Xingchen Liu, Hong Meng, Wei Huang","doi":"10.1038/s41467-024-52430-2","DOIUrl":null,"url":null,"abstract":"<p>Black-to-transparent electrochromism is hailed as the holy grail of organic optoelectronics. Despite its potential, designing black electrochromic materials that fully absorb visible light remains a significant challenge. Electroactive materials that simultaneously possess excellent cyclic stability, fast switching times, and high coloration efficiency are rare. In this study, we successfully designed copolymers that fully absorb the entire visible spectrum by judiciously selecting four types of monomers. We incorporated two types of polar side chains to synergistically enhance the ionic conductivity of the copolymers, thus improving the performance of electrochromic devices. Among these electrochromic devices, the P2-a device exhibits cycling stability exceeding 10<sup>5</sup> cycles, and the P2-c device demonstrates a coloring/ bleaching time of 0.82 s/0.86 s and achieves a coloration efficiency of 1078 cm²/C. This study proposes a strategy for designing and synthesizing high-performance black electrochromic copolymers.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":null,"pages":null},"PeriodicalIF":14.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-52430-2","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Black-to-transparent electrochromism is hailed as the holy grail of organic optoelectronics. Despite its potential, designing black electrochromic materials that fully absorb visible light remains a significant challenge. Electroactive materials that simultaneously possess excellent cyclic stability, fast switching times, and high coloration efficiency are rare. In this study, we successfully designed copolymers that fully absorb the entire visible spectrum by judiciously selecting four types of monomers. We incorporated two types of polar side chains to synergistically enhance the ionic conductivity of the copolymers, thus improving the performance of electrochromic devices. Among these electrochromic devices, the P2-a device exhibits cycling stability exceeding 105 cycles, and the P2-c device demonstrates a coloring/ bleaching time of 0.82 s/0.86 s and achieves a coloration efficiency of 1078 cm²/C. This study proposes a strategy for designing and synthesizing high-performance black electrochromic copolymers.

Abstract Image

实现电致变色器件全光谱控制的高性能黑色共聚物
从黑色到透明的电致变色被誉为有机光电子学的圣杯。尽管潜力巨大,但设计出能完全吸收可见光的黑色电致变色材料仍是一项重大挑战。同时具有出色的循环稳定性、快速切换时间和高着色效率的电活性材料并不多见。在这项研究中,我们通过合理选择四种单体,成功设计出了能够完全吸收整个可见光谱的共聚物。我们加入了两种极性侧链,协同增强了共聚物的离子传导性,从而提高了电致变色器件的性能。在这些电致变色器件中,P2-a 器件的循环稳定性超过了 105 次,P2-c 器件的着色/漂白时间为 0.82 秒/0.86 秒,着色效率达到了 1078 cm²/C。本研究提出了一种设计和合成高性能黑色电致变色共聚物的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信