A survey on pragmatic processing techniques

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Rui Mao , Mengshi Ge , Sooji Han , Wei Li , Kai He , Luyao Zhu , Erik Cambria
{"title":"A survey on pragmatic processing techniques","authors":"Rui Mao ,&nbsp;Mengshi Ge ,&nbsp;Sooji Han ,&nbsp;Wei Li ,&nbsp;Kai He ,&nbsp;Luyao Zhu ,&nbsp;Erik Cambria","doi":"10.1016/j.inffus.2024.102712","DOIUrl":null,"url":null,"abstract":"<div><div>Pragmatics, situated in the domains of linguistics and computational linguistics, explores the influence of context on language interpretation, extending beyond the literal meaning of expressions. It constitutes a fundamental element for natural language understanding in machine intelligence. With the advancement of large language models, the research focus in natural language processing has predominantly shifted toward high-level task processing, inadvertently downplaying the importance of foundational pragmatic processing tasks. Nevertheless, pragmatics serves as a crucial medium for unraveling human language cognition. The exploration of pragmatic processing stands as a pivotal facet in realizing linguistic intelligence. This survey encompasses important pragmatic processing techniques for subjective and emotive tasks, such as personality recognition, sarcasm detection, metaphor understanding, aspect extraction, and sentiment polarity detection. It spans theoretical research, the forefront of pragmatic processing techniques, and downstream applications, aiming to highlight the significance of these low-level tasks in advancing natural language understanding and linguistic intelligence.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"114 ","pages":"Article 102712"},"PeriodicalIF":14.7000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253524004901","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Pragmatics, situated in the domains of linguistics and computational linguistics, explores the influence of context on language interpretation, extending beyond the literal meaning of expressions. It constitutes a fundamental element for natural language understanding in machine intelligence. With the advancement of large language models, the research focus in natural language processing has predominantly shifted toward high-level task processing, inadvertently downplaying the importance of foundational pragmatic processing tasks. Nevertheless, pragmatics serves as a crucial medium for unraveling human language cognition. The exploration of pragmatic processing stands as a pivotal facet in realizing linguistic intelligence. This survey encompasses important pragmatic processing techniques for subjective and emotive tasks, such as personality recognition, sarcasm detection, metaphor understanding, aspect extraction, and sentiment polarity detection. It spans theoretical research, the forefront of pragmatic processing techniques, and downstream applications, aiming to highlight the significance of these low-level tasks in advancing natural language understanding and linguistic intelligence.
实用处理技术调查
语用学属于语言学和计算语言学的范畴,探讨语境对语言解释的影响,超越表达的字面意义。它是机器智能中自然语言理解的基本要素。随着大型语言模型的发展,自然语言处理的研究重点主要转向高级任务处理,无意中淡化了基础语用处理任务的重要性。然而,语用学是揭示人类语言认知的重要媒介。对语用加工的探索是实现语言智能的一个关键方面。本调查涵盖了用于主观和情感任务的重要语用处理技术,如个性识别、讽刺检测、隐喻理解、方面提取和情感极性检测。它横跨理论研究、语用处理技术的前沿和下游应用,旨在强调这些低级任务在推进自然语言理解和语言智能方面的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信