Atanu Baksi, Hasan Zerze, Aman Agrawal, Alamgir Karim, Gül H. Zerze
{"title":"The molecular picture of the local environment in a stable model coacervate","authors":"Atanu Baksi, Hasan Zerze, Aman Agrawal, Alamgir Karim, Gül H. Zerze","doi":"10.1038/s42004-024-01304-1","DOIUrl":null,"url":null,"abstract":"Complex coacervates play essential roles in various biological processes and applications. Although substantial progress has been made in understanding the molecular interactions driving complex coacervation, the mechanisms stabilizing coacervates against coalescence remain experimentally challenging and not fully elucidated. We recently showed that polydiallyldimethylammonium chloride (PDDA) and adenosine triphosphate (ATP) coacervates stabilize upon their transfer to deionized (DI) water. Here, we perform molecular dynamics simulations of PDDA-ATP coacervates in supernatant and DI water, to understand the ion dynamics and structure within stable coacervates. We found that transferring the coacervates to DI water results in an immediate ejection of a significant fraction of small ions (Na+ and Cl−) from the surface of the coacervates to DI water. We also observed a notable reduction in the mobility of these counterions in coacervates when in DI water, both in the cluster-forming and slab simulations, together with a lowered displacement of PDDA and ATP. These results suggest that the initial ejection of the ions from the coacervates in DI water may induce an interfacial skin layer formation, inhibiting further mobility of ions in the skin layer. Transferring coacervates based on polydiallyldimethylammonium chloride and adenosine triphosphate into deionized water has been experimentally demonstrated to stabilize them against coalescence. Here, molecular modeling and simulations are used to study the coacervation and stabilization of the relevant polyelectrolyte mixture, systematically investigating the structural and dynamic properties that lead to stability.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-11"},"PeriodicalIF":5.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01304-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s42004-024-01304-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Complex coacervates play essential roles in various biological processes and applications. Although substantial progress has been made in understanding the molecular interactions driving complex coacervation, the mechanisms stabilizing coacervates against coalescence remain experimentally challenging and not fully elucidated. We recently showed that polydiallyldimethylammonium chloride (PDDA) and adenosine triphosphate (ATP) coacervates stabilize upon their transfer to deionized (DI) water. Here, we perform molecular dynamics simulations of PDDA-ATP coacervates in supernatant and DI water, to understand the ion dynamics and structure within stable coacervates. We found that transferring the coacervates to DI water results in an immediate ejection of a significant fraction of small ions (Na+ and Cl−) from the surface of the coacervates to DI water. We also observed a notable reduction in the mobility of these counterions in coacervates when in DI water, both in the cluster-forming and slab simulations, together with a lowered displacement of PDDA and ATP. These results suggest that the initial ejection of the ions from the coacervates in DI water may induce an interfacial skin layer formation, inhibiting further mobility of ions in the skin layer. Transferring coacervates based on polydiallyldimethylammonium chloride and adenosine triphosphate into deionized water has been experimentally demonstrated to stabilize them against coalescence. Here, molecular modeling and simulations are used to study the coacervation and stabilization of the relevant polyelectrolyte mixture, systematically investigating the structural and dynamic properties that lead to stability.
期刊介绍:
Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.