Menghan Tian, Baolei Liu, Zelin Lu, Yao Wang, Ze Zheng, Jiaqi Song, Xiaolan Zhong, Fan Wang
{"title":"Miniaturized on-chip spectrometer enabled by electrochromic modulation","authors":"Menghan Tian, Baolei Liu, Zelin Lu, Yao Wang, Ze Zheng, Jiaqi Song, Xiaolan Zhong, Fan Wang","doi":"10.1038/s41377-024-01638-4","DOIUrl":null,"url":null,"abstract":"<p>Miniaturized on-chip spectrometers with small footprints, lightweight, and low cost are in great demand for portable optical sensing, lab-on-chip systems, and so on. Such miniaturized spectrometers are usually based on engineered spectral response units and then reconstruct unknown spectra with algorithms. However, due to the limited footprints of computational on-chip spectrometers, the recovered spectral resolution is limited by the number of integrated spectral response units/filters. Thus, it is challenging to improve the spectral resolution without increasing the number of used filters. Here we present a computational on-chip spectrometer using electrochromic filter-based computational spectral units that can be electrochemically modulated to increase the efficient sampling number for higher spectral resolution. These filters are directly integrated on top of the photodetector pixels, and the spectral modulation of the filters results from redox reactions during the dual injection of ions and electrons into the electrochromic material. We experimentally demonstrate that the spectral resolution of the proposed spectrometer can be effectively improved as the number of applied voltages increases. The average difference of the peak wavelengths between the reconstructed and the reference spectra decreases from 1.61 nm to 0.29 nm. We also demonstrate the proposed spectrometer can be worked with only four or two filter units, assisted by electrochromic modulation. In addition, we also demonstrate that the electrochromic filter can be easily adapted for hyperspectral imaging, due to its uniform transparency. This strategy suggests a new way to enhance the performance of miniaturized spectrometers with tunable spectral filters for high resolution, low-cost, and portable spectral sensing, and would also inspire the exploration of other stimulus responses such as photochromic and force-chromic, etc, on computational spectrometers.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"33 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01638-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Miniaturized on-chip spectrometers with small footprints, lightweight, and low cost are in great demand for portable optical sensing, lab-on-chip systems, and so on. Such miniaturized spectrometers are usually based on engineered spectral response units and then reconstruct unknown spectra with algorithms. However, due to the limited footprints of computational on-chip spectrometers, the recovered spectral resolution is limited by the number of integrated spectral response units/filters. Thus, it is challenging to improve the spectral resolution without increasing the number of used filters. Here we present a computational on-chip spectrometer using electrochromic filter-based computational spectral units that can be electrochemically modulated to increase the efficient sampling number for higher spectral resolution. These filters are directly integrated on top of the photodetector pixels, and the spectral modulation of the filters results from redox reactions during the dual injection of ions and electrons into the electrochromic material. We experimentally demonstrate that the spectral resolution of the proposed spectrometer can be effectively improved as the number of applied voltages increases. The average difference of the peak wavelengths between the reconstructed and the reference spectra decreases from 1.61 nm to 0.29 nm. We also demonstrate the proposed spectrometer can be worked with only four or two filter units, assisted by electrochromic modulation. In addition, we also demonstrate that the electrochromic filter can be easily adapted for hyperspectral imaging, due to its uniform transparency. This strategy suggests a new way to enhance the performance of miniaturized spectrometers with tunable spectral filters for high resolution, low-cost, and portable spectral sensing, and would also inspire the exploration of other stimulus responses such as photochromic and force-chromic, etc, on computational spectrometers.
期刊介绍:
ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to:
Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics)
Biological characterization of new molecular entities in the context of drug discovery
Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc.
Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry
Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources
Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response
Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic
Mechanistic drug metabolism and regulation of metabolic enzyme gene expression
Chemistry patents relevant to the medicinal chemistry field.