Rapid Ductile Strain Localization Due To Thermal Runaway

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
A. Spang, M. Thielmann, D. Kiss
{"title":"Rapid Ductile Strain Localization Due To Thermal Runaway","authors":"A. Spang,&nbsp;M. Thielmann,&nbsp;D. Kiss","doi":"10.1029/2024JB028846","DOIUrl":null,"url":null,"abstract":"<p>Thermal runaway is a ductile localization mechanism that has been linked to deep-focus earthquakes and pseudotachylyte formation. In this study, we investigate the dynamics of this process using one-dimensional, numerical models of simple shear deformation. The models employ a visco-elastic rheology where viscous creep is accommodated with a composite rheology encompassing diffusion and dislocation creep as well as low-temperature plasticity. To solve the nonlinear system of differential equations governing this rheology, we utilize the pseudo-transient iterative method in combination with a viscosity regularization to avoid resolution dependencies. To determine the impact of different model parameters on the occurrence of thermal runaway, we perform a parameter sensitivity study consisting of 6,000 numerical experiments. We observe two distinct behaviors, namely a stable regime, characterized by transient shear zone formation accompanied by a moderate (100–300 K) temperature increase, and a thermal runaway regime, characterized by strong localization, rapid slip and a temperature surge of thousands of Kelvin. Nondimensional scaling analysis allows us to determine two dimensionless groups that predict the model behavior. The ratio <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>t</mi>\n <mi>r</mi>\n </msub>\n <mo>/</mo>\n <msub>\n <mi>t</mi>\n <mi>d</mi>\n </msub>\n </mrow>\n <annotation> ${t}_{\\mathrm{r}}/{t}_{\\mathrm{d}}$</annotation>\n </semantics></math> represents the competition between heat generation from stress relaxation and heat loss due to thermal diffusion while the ratio <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>U</mi>\n <mtext>el</mtext>\n </msub>\n <mo>/</mo>\n <msub>\n <mi>U</mi>\n <mtext>th</mtext>\n </msub>\n </mrow>\n <annotation> ${U}_{\\text{el}}/{U}_{\\text{th}}$</annotation>\n </semantics></math> compares the stored elastic energy to thermal energy in the system. Thermal runaway occurs if <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>t</mi>\n <mi>r</mi>\n </msub>\n <mo>/</mo>\n <msub>\n <mi>t</mi>\n <mi>d</mi>\n </msub>\n </mrow>\n <annotation> ${t}_{\\mathrm{r}}/{t}_{\\mathrm{d}}$</annotation>\n </semantics></math> is small and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>U</mi>\n <mtext>el</mtext>\n </msub>\n <mo>/</mo>\n <msub>\n <mi>U</mi>\n <mtext>th</mtext>\n </msub>\n </mrow>\n <annotation> ${U}_{\\text{el}}/{U}_{\\text{th}}$</annotation>\n </semantics></math> is large. Our results demonstrate that thermal runaway is a viable mechanism driving fast slip events that are in line with deep-focus earthquakes and pseudotachylyte formation at conditions resembling cores of subducting slabs.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"129 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB028846","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB028846","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal runaway is a ductile localization mechanism that has been linked to deep-focus earthquakes and pseudotachylyte formation. In this study, we investigate the dynamics of this process using one-dimensional, numerical models of simple shear deformation. The models employ a visco-elastic rheology where viscous creep is accommodated with a composite rheology encompassing diffusion and dislocation creep as well as low-temperature plasticity. To solve the nonlinear system of differential equations governing this rheology, we utilize the pseudo-transient iterative method in combination with a viscosity regularization to avoid resolution dependencies. To determine the impact of different model parameters on the occurrence of thermal runaway, we perform a parameter sensitivity study consisting of 6,000 numerical experiments. We observe two distinct behaviors, namely a stable regime, characterized by transient shear zone formation accompanied by a moderate (100–300 K) temperature increase, and a thermal runaway regime, characterized by strong localization, rapid slip and a temperature surge of thousands of Kelvin. Nondimensional scaling analysis allows us to determine two dimensionless groups that predict the model behavior. The ratio t r / t d ${t}_{\mathrm{r}}/{t}_{\mathrm{d}}$ represents the competition between heat generation from stress relaxation and heat loss due to thermal diffusion while the ratio U el / U th ${U}_{\text{el}}/{U}_{\text{th}}$ compares the stored elastic energy to thermal energy in the system. Thermal runaway occurs if t r / t d ${t}_{\mathrm{r}}/{t}_{\mathrm{d}}$ is small and U el / U th ${U}_{\text{el}}/{U}_{\text{th}}$ is large. Our results demonstrate that thermal runaway is a viable mechanism driving fast slip events that are in line with deep-focus earthquakes and pseudotachylyte formation at conditions resembling cores of subducting slabs.

Abstract Image

热失控导致的快速韧性应变定位
热失控是一种韧性局部化机制,与深焦距地震和假水成岩有关。在本研究中,我们使用简单剪切变形的一维数值模型研究了这一过程的动力学。模型采用粘弹性流变学,其中粘性蠕变与包含扩散蠕变、位错蠕变以及低温塑性的复合流变学相适应。为了求解支配这种流变学的非线性微分方程系统,我们采用了伪瞬态迭代法,并结合粘度正则化来避免分辨率依赖性。为了确定不同模型参数对发生热失控的影响,我们进行了参数敏感性研究,包括 6,000 次数值实验。我们观察到两种截然不同的行为,即以瞬态剪切区形成为特征、伴随着适度(100-300 K)温度上升的稳定状态,以及以强烈局部化、快速滑移和数千开尔文的温度飙升为特征的热失控状态。通过无量纲分析,我们可以确定两个预测模型行为的无量纲组。比率 tr/td${t}_{\mathrm{r}}/{t}_{\mathrm{d}}$ 代表应力松弛产生的热量与热扩散造成的热量损失之间的竞争,而比率 Uel/Uth${U}_{\text{el}}/{U}_{\text{th}}$ 则比较系统中存储的弹性能量与热能。如果 tr/td${t}_{\mathrm{r}}/{t}_{\mathrm{d}}$ 较小,而 Uel/Uth${U}_{text{el}}/{U}_{text{th}}$ 较大,就会发生热失控。我们的结果表明,热失控是驱动快速滑移事件的一种可行机制,它与深焦距地震以及在类似于俯冲板块核心的条件下形成的假水成岩相一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Solid Earth
Journal of Geophysical Research: Solid Earth Earth and Planetary Sciences-Geophysics
CiteScore
7.50
自引率
15.40%
发文量
559
期刊介绍: The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology. JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields. JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信