Abhijeet Gorey;Rajat Das;Chirabrata Bhaumik;Tapas Chakravarty;Arpan Pal
{"title":"Photoacoustic Sensing System for Noninvasive and Real-Time Measurement of Paint's Viscosity in Flowing Conditions","authors":"Abhijeet Gorey;Rajat Das;Chirabrata Bhaumik;Tapas Chakravarty;Arpan Pal","doi":"10.1109/LSENS.2024.3454764","DOIUrl":null,"url":null,"abstract":"Inline measurement of paint viscosity in the flowing conditions is extremely important for the paint manufacturing industry. This study proposes a noninvasive, cost-effective, inline method to measure paint's viscosity using frequency domain photoacoustic (PA) sensing. Through a PA signal, three different frequency and time domain features, namely, spectral amplitude ratio, acoustic attenuation, and acoustic wave velocity, are extracted. Due to the lower accuracy (<90%) of the aforementioned features, a novel statistical feature, i.e., the harmonic mean is derived from the existing features to enhance the accuracy of the measurement. To mitigate the experimental challenges, the viscosity model is trained from the PA data under static condition and tested for the paint under flowing condition. In the flowing conditions, the accuracy in the measurement is found to be less than 93%. Hence, a correction factor is introduced, which considers the Doppler shift in the PA wave velocity due to the paint flow. With this correction factor, the accuracy of the viscosity measurement is found to be greater than 95%. The developed viscosity model is validated through the fourfold cross-validation and the results are confirmed for their repeatability and tested with different paint samples.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 10","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10666093/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Inline measurement of paint viscosity in the flowing conditions is extremely important for the paint manufacturing industry. This study proposes a noninvasive, cost-effective, inline method to measure paint's viscosity using frequency domain photoacoustic (PA) sensing. Through a PA signal, three different frequency and time domain features, namely, spectral amplitude ratio, acoustic attenuation, and acoustic wave velocity, are extracted. Due to the lower accuracy (<90%) of the aforementioned features, a novel statistical feature, i.e., the harmonic mean is derived from the existing features to enhance the accuracy of the measurement. To mitigate the experimental challenges, the viscosity model is trained from the PA data under static condition and tested for the paint under flowing condition. In the flowing conditions, the accuracy in the measurement is found to be less than 93%. Hence, a correction factor is introduced, which considers the Doppler shift in the PA wave velocity due to the paint flow. With this correction factor, the accuracy of the viscosity measurement is found to be greater than 95%. The developed viscosity model is validated through the fourfold cross-validation and the results are confirmed for their repeatability and tested with different paint samples.
在线测量流动状态下的涂料粘度对涂料制造业极为重要。本研究提出了一种利用频域光声(PA)传感技术测量涂料粘度的无创、经济、在线方法。通过 PA 信号,可提取三种不同的频域和时域特征,即频谱振幅比、声衰减和声波速度。由于上述特征的准确度较低(<90%),因此从现有特征中提取了一种新的统计特征,即谐波平均值,以提高测量的准确度。为减轻实验挑战,我们根据静态 PA 数据训练粘度模型,并对流动条件下的涂料进行测试。在流动条件下,测量精度低于 93%。因此,引入了一个校正因子,该因子考虑了涂料流动导致的 PA 波速多普勒偏移。使用该校正系数后,粘度测量的准确度大于 95%。开发的粘度模型通过四重交叉验证进行了验证,结果的可重复性得到了确认,并用不同的油漆样品进行了测试。