Super-Resolution Using FMCW Radar via Reweighted Decoupled Matrix Atomic Norm Minimization

Abhilash Gaur;Seshan Srirangarajan;Po-Hsuan Tseng;Kai-Ten Feng
{"title":"Super-Resolution Using FMCW Radar via Reweighted Decoupled Matrix Atomic Norm Minimization","authors":"Abhilash Gaur;Seshan Srirangarajan;Po-Hsuan Tseng;Kai-Ten Feng","doi":"10.1109/TRS.2024.3461208","DOIUrl":null,"url":null,"abstract":"In this article, we investigate the joint estimation of range and velocity of targets using a wideband frequency-modulated continuous wave (FMCW) radar in the presence of range-Doppler coupling. To mitigate the effects of range-Doppler coupling, we propose a phase compensation framework based on a decoupled matrix atomic norm minimization (DANM). Subsequently, we propose a concave log-det heuristic to bridge the gap between atomic \n<inline-formula> <tex-math>$\\ell _{0}$ </tex-math></inline-formula>\n-norm and atomic \n<inline-formula> <tex-math>$\\ell _{1}$ </tex-math></inline-formula>\n-norm. To enhance the resolution, we use the proposed heuristic to formulate a reweighted decoupled 2-D matrix atomic norm (RMAN) minimization scheme and propose a semidefinite programming (SDP) solution for RMAN to decouple range and Doppler frequencies. Furthermore, we propose a novel RMAN-based approach for joint estimation of range and velocity of targets. The proposed algorithm is a gridless method that achieves resolution beyond the Rayleigh resolution limit and outperforms the conventional Fourier transform-based method in terms of estimation accuracy and root-mean-square error (RMSE), which converges to the derived Cramér-Rao lower bound (CRLB) as the signal-to-noise ratio (SNR) increases. The super-resolution ability of the proposed method is validated through extensive simulations under different scenarios.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"2 ","pages":"924-935"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10680643/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we investigate the joint estimation of range and velocity of targets using a wideband frequency-modulated continuous wave (FMCW) radar in the presence of range-Doppler coupling. To mitigate the effects of range-Doppler coupling, we propose a phase compensation framework based on a decoupled matrix atomic norm minimization (DANM). Subsequently, we propose a concave log-det heuristic to bridge the gap between atomic $\ell _{0}$ -norm and atomic $\ell _{1}$ -norm. To enhance the resolution, we use the proposed heuristic to formulate a reweighted decoupled 2-D matrix atomic norm (RMAN) minimization scheme and propose a semidefinite programming (SDP) solution for RMAN to decouple range and Doppler frequencies. Furthermore, we propose a novel RMAN-based approach for joint estimation of range and velocity of targets. The proposed algorithm is a gridless method that achieves resolution beyond the Rayleigh resolution limit and outperforms the conventional Fourier transform-based method in terms of estimation accuracy and root-mean-square error (RMSE), which converges to the derived Cramér-Rao lower bound (CRLB) as the signal-to-noise ratio (SNR) increases. The super-resolution ability of the proposed method is validated through extensive simulations under different scenarios.
通过重加权解耦矩阵原子规范最小化利用 FMCW 雷达实现超分辨率
本文研究了在存在测距-多普勒耦合的情况下,使用宽带频率调制连续波(FMCW)雷达联合估计目标的测距和速度。为了减轻测距-多普勒耦合的影响,我们提出了一个基于解耦矩阵原子规范最小化(DANM)的相位补偿框架。随后,我们提出了一种凹 log-det 启发式来弥补原子$\ell _{0}$-规范和原子$\ell _{1}$-规范之间的差距。为了提高分辨率,我们利用所提出的启发式制定了一个重新加权解耦的二维矩阵原子规范(RMAN)最小化方案,并为 RMAN 提出了一个半定式编程(SDP)解决方案,以解耦测距和多普勒频率。此外,我们还提出了一种基于 RMAN 的新方法,用于联合估计目标的距离和速度。所提出的算法是一种无网格方法,其分辨率超过了瑞利分辨率极限,在估计精度和均方根误差(RMSE)方面优于传统的基于傅立叶变换的方法,随着信噪比(SNR)的增加,RMSE 趋近于推导出的克拉梅尔-拉奥下限(CRLB)。通过在不同场景下进行大量模拟,验证了所提方法的超分辨率能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信