Ji Wang, Miao Zhang, Quanjun Yin, Lujia Yin, Yong Peng
{"title":"Multi-agent reinforcement learning for task offloading with hybrid decision space in multi-access edge computing","authors":"Ji Wang, Miao Zhang, Quanjun Yin, Lujia Yin, Yong Peng","doi":"10.1016/j.adhoc.2024.103671","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-access Edge Computing (MEC) has become a significant technology for supporting the computation-intensive and time-sensitive applications on the Internet of Things (IoT) devices. However, it is challenging to jointly optimize task offloading and resource allocation in the dynamic wireless environment with constrained edge resource. In this paper, we investigate a multi-user and multi-MEC servers system with varying task request and stochastic channel condition. Our purpose is to minimize the total energy consumption and time delay by optimizing the offloading decision, offloading ratio and computing resource allocation simultaneously. As the users are geographically distributed within an area, we formulate the problem of task offloading and resource allocation in MEC system as a partially observable Markov decision process (POMDP) and propose a novel multi-agent deep reinforcement learning (MADRL) -based algorithm to solve it. In particular, two aspects have been modified for performance enhancement: (1) To make fine-grained control, we design a novel neural network structure to effectively handle the hybrid action space arisen by the heterogeneous variables. (2) An adaptive reward mechanism is proposed to reasonably evaluate the infeasible actions and to mitigate the instability caused by manual configuration. Simulation results show the proposed method can achieve <span><math><mrow><mn>7</mn><mo>.</mo><mn>12</mn><mtext>%</mtext><mo>−</mo><mn>20</mn><mo>.</mo><mn>97</mn><mtext>%</mtext></mrow></math></span> performance enhancements compared with the existing approaches.</div></div>","PeriodicalId":55555,"journal":{"name":"Ad Hoc Networks","volume":"166 ","pages":"Article 103671"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ad Hoc Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570870524002828","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-access Edge Computing (MEC) has become a significant technology for supporting the computation-intensive and time-sensitive applications on the Internet of Things (IoT) devices. However, it is challenging to jointly optimize task offloading and resource allocation in the dynamic wireless environment with constrained edge resource. In this paper, we investigate a multi-user and multi-MEC servers system with varying task request and stochastic channel condition. Our purpose is to minimize the total energy consumption and time delay by optimizing the offloading decision, offloading ratio and computing resource allocation simultaneously. As the users are geographically distributed within an area, we formulate the problem of task offloading and resource allocation in MEC system as a partially observable Markov decision process (POMDP) and propose a novel multi-agent deep reinforcement learning (MADRL) -based algorithm to solve it. In particular, two aspects have been modified for performance enhancement: (1) To make fine-grained control, we design a novel neural network structure to effectively handle the hybrid action space arisen by the heterogeneous variables. (2) An adaptive reward mechanism is proposed to reasonably evaluate the infeasible actions and to mitigate the instability caused by manual configuration. Simulation results show the proposed method can achieve performance enhancements compared with the existing approaches.
期刊介绍:
The Ad Hoc Networks is an international and archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in ad hoc and sensor networking areas. The Ad Hoc Networks considers original, high quality and unpublished contributions addressing all aspects of ad hoc and sensor networks. Specific areas of interest include, but are not limited to:
Mobile and Wireless Ad Hoc Networks
Sensor Networks
Wireless Local and Personal Area Networks
Home Networks
Ad Hoc Networks of Autonomous Intelligent Systems
Novel Architectures for Ad Hoc and Sensor Networks
Self-organizing Network Architectures and Protocols
Transport Layer Protocols
Routing protocols (unicast, multicast, geocast, etc.)
Media Access Control Techniques
Error Control Schemes
Power-Aware, Low-Power and Energy-Efficient Designs
Synchronization and Scheduling Issues
Mobility Management
Mobility-Tolerant Communication Protocols
Location Tracking and Location-based Services
Resource and Information Management
Security and Fault-Tolerance Issues
Hardware and Software Platforms, Systems, and Testbeds
Experimental and Prototype Results
Quality-of-Service Issues
Cross-Layer Interactions
Scalability Issues
Performance Analysis and Simulation of Protocols.