Aaqib Shaheen , Zheng Li , Yingying Yang , Jinjin Xie , Lele Zhu , Can Li , Fang Nie , Meng Wang , Yixian Wang , Awais Rasheed , Hao Li , Yun Zhou , Chun-Peng Song
{"title":"Genetic regulation of wheat plant architecture and future prospects for its improvement","authors":"Aaqib Shaheen , Zheng Li , Yingying Yang , Jinjin Xie , Lele Zhu , Can Li , Fang Nie , Meng Wang , Yixian Wang , Awais Rasheed , Hao Li , Yun Zhou , Chun-Peng Song","doi":"10.1016/j.ncrops.2024.100048","DOIUrl":null,"url":null,"abstract":"<div><div>More than a third of the world’s population's primary source of food is common wheat (<em>Triticum aestivum</em> L.). The total yield must be boosted from 3 tons hec<sup>‐1</sup> to 5 tons per hec<sup>‐1</sup> to meet the global food demands by 2050. A major breeding objective is to change the plant architecture to develop varieties suited for intensive agricultural practices and able to withstand climate extremes. Modifying plant architecture could significantly improve productivity; however, it is challenging due to negative associations with key agronomic traits influencing yield. The current research focus of this decade revolves around three critical agronomic variables: tiller number, plant height, and tiller angle. These variables have a significant role in altering plant architecture and ultimately impacting the potential yield. The ideal plant architecture requires moderate planting density, a narrow tiller angle, and reduced plant height, which can be attained through special tiller arrangement. Here, we review the developmental biology and underpinning genetics of the plant architecture traits, especially the genetic factors and environmental factors influencing wheat architecture. The use of crop wild relatives (CWRs), such as <em>Aegilops tauschii,</em> can enhance wheat cultivation by increasing breeding diversity and introgressing beneficial genes into elite wheat germplasm through the recently developed rapid high-throughput introgression (RHI) protocol. Identifying defective mutants and characterizing their corresponding genes will assist us in understanding the molecular mechanism and deploying beneficial alleles to manipulate plant architecture.</div></div>","PeriodicalId":100953,"journal":{"name":"New Crops","volume":"2 ","pages":"Article 100048"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Crops","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949952624000384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
More than a third of the world’s population's primary source of food is common wheat (Triticum aestivum L.). The total yield must be boosted from 3 tons hec‐1 to 5 tons per hec‐1 to meet the global food demands by 2050. A major breeding objective is to change the plant architecture to develop varieties suited for intensive agricultural practices and able to withstand climate extremes. Modifying plant architecture could significantly improve productivity; however, it is challenging due to negative associations with key agronomic traits influencing yield. The current research focus of this decade revolves around three critical agronomic variables: tiller number, plant height, and tiller angle. These variables have a significant role in altering plant architecture and ultimately impacting the potential yield. The ideal plant architecture requires moderate planting density, a narrow tiller angle, and reduced plant height, which can be attained through special tiller arrangement. Here, we review the developmental biology and underpinning genetics of the plant architecture traits, especially the genetic factors and environmental factors influencing wheat architecture. The use of crop wild relatives (CWRs), such as Aegilops tauschii, can enhance wheat cultivation by increasing breeding diversity and introgressing beneficial genes into elite wheat germplasm through the recently developed rapid high-throughput introgression (RHI) protocol. Identifying defective mutants and characterizing their corresponding genes will assist us in understanding the molecular mechanism and deploying beneficial alleles to manipulate plant architecture.