On the Selmer group and rank of a family of elliptic curves and curves of genus one violating the Hasse principle

Pub Date : 2024-09-23 DOI:10.1016/j.jnt.2024.08.001
Eleni Agathocleous
{"title":"On the Selmer group and rank of a family of elliptic curves and curves of genus one violating the Hasse principle","authors":"Eleni Agathocleous","doi":"10.1016/j.jnt.2024.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>We study an infinite family of <em>j</em>-invariant zero elliptic curves <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>:</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mn>16</mn><mi>D</mi></math></span> and their <em>λ</em>-isogenous curves <span><math><msub><mrow><mi>E</mi></mrow><mrow><msup><mrow><mi>D</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msub><mo>:</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mn>27</mn><mo>⋅</mo><mn>16</mn><mi>D</mi></math></span>, where <em>D</em> and <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>=</mo><mo>−</mo><mn>3</mn><mi>D</mi></math></span> are fundamental discriminants of a specific form, and <em>λ</em> is an isogeny of degree 3. A result of Honda guarantees that for our discriminants <em>D</em>, the quadratic number field <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>=</mo><mi>Q</mi><mo>(</mo><msqrt><mrow><mi>D</mi></mrow></msqrt><mo>)</mo></math></span> always has non-trivial 3-class group. We prove a series of results related to the set of rational points <span><math><msub><mrow><mi>E</mi></mrow><mrow><msup><mrow><mi>D</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msub><mo>(</mo><mi>Q</mi><mo>)</mo><mo>∖</mo><mi>λ</mi><mo>(</mo><msub><mrow><mi>E</mi></mrow><mrow><mi>D</mi></mrow></msub><mo>(</mo><mi>Q</mi><mo>)</mo><mo>)</mo></math></span>, and the <span><math><mi>S</mi><mi>L</mi><mo>(</mo><mn>2</mn><mo>,</mo><mi>Z</mi><mo>)</mo></math></span>-equivalence classes of irreducible integral binary cubic forms of discriminant <em>D</em>. By assuming finiteness of the Tate-Shafarevich group, we derive a parity result between the rank of <span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>D</mi></mrow></msub></math></span> and the rank of its 3-Selmer group, and we establish lower and upper bounds for the rank of our elliptic curves. Finally, we give explicit classes of genus-1 curves that correspond to irreducible integral binary cubic forms of discriminant <span><math><mi>D</mi><mo>=</mo><mn>48035713</mn></math></span>, and we show that every curve in these classes violates the Hasse Principle.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study an infinite family of j-invariant zero elliptic curves ED:y2=x3+16D and their λ-isogenous curves ED:y2=x32716D, where D and D=3D are fundamental discriminants of a specific form, and λ is an isogeny of degree 3. A result of Honda guarantees that for our discriminants D, the quadratic number field KD=Q(D) always has non-trivial 3-class group. We prove a series of results related to the set of rational points ED(Q)λ(ED(Q)), and the SL(2,Z)-equivalence classes of irreducible integral binary cubic forms of discriminant D. By assuming finiteness of the Tate-Shafarevich group, we derive a parity result between the rank of ED and the rank of its 3-Selmer group, and we establish lower and upper bounds for the rank of our elliptic curves. Finally, we give explicit classes of genus-1 curves that correspond to irreducible integral binary cubic forms of discriminant D=48035713, and we show that every curve in these classes violates the Hasse Principle.
分享
查看原文
论违反哈塞原理的椭圆曲线和一属曲线族的塞尔默群和秩
我们研究了 j-invariant 零椭圆曲线 ED:y2=x3+16D 及其 λ-isogenous 曲线 ED′:y2=x3-27⋅16D,其中 D 和 D′=-3D 是特定形式的基本判别式,λ 是阶数为 3 的等元。本田的一个结果保证,对于我们的判别式 D,二次数域 KD=Q(D) 总是具有非三阶群。我们证明了一系列与有理点集 ED′(Q)∖λ(ED(Q))和判别式 D 的不可还原积分二元三次方形式的 SL(2,Z) 等价类有关的结果。通过假定 Tate-Shafarevich 群的有限性,我们推导出 ED 的秩与其 3-Selmer 群的秩之间的奇偶性结果,并建立了椭圆曲线秩的下限和上限。最后,我们给出了与判别式 D=48035713 的不可还原积分二元三次方形式相对应的明确的属-1 曲线类,并证明了这些类中的每条曲线都违反了哈塞原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信