{"title":"Cost-effective production of Titania nanoparticles for the modification of transformer insulating oil","authors":"","doi":"10.1016/j.jics.2024.101383","DOIUrl":null,"url":null,"abstract":"<div><div>Nanofluids are prospective solutions for improving the transformer dielectric strengthby adding nanoparticles to the standard oils used in transformers.Oil-based titania nanofluids are becoming increasingly popular due to their superior insulating qualities and distinctive thermal performance, and they areconsideredas possible replacements in the domains of transformer insulating oils.This paper describes the industrial synthesis of titania nanoparticles for improving the insulating characteristics of virgin oil used in transformers.The titania nanoparticles were analyzed using an X-ray diffractogram (XRD), which revealed a prominent peak at Bragg angle 25<sup>O</sup>, indicating that the titania nanoparticles were generated in the anatase phase. Fourier transform infrared (FTIR) spectroscopy study endorsed the formation of Ti-O-Ti, Ti-OH, C-H and O-H stretching vibrations at 760 cm<sup>−1</sup>, 1345 cm<sup>−1</sup>, 2475 cm<sup>−1</sup>, and 3646 cm<sup>−1</sup> wavenumbers respectively. Field emission scanning electron microscopy (FESEM) and Atomic Force Microscopy (AFM) examinations on the produced titania nanoparticles revealed that the particles had a circular shape with a diameter of 55 nm and an average roughness value of roughly 3.6 nm respectively.The viscosity of the host virgin oil and the nanoparticles-filled nanofluid were examined, and higher viscosity values were found as particle concentration increased.The effective conductivity study with the zeta potential and thermal conductivity fluctuation with temperature variation also revealed that at higher temperatures, conductivity with the zeta potential increased and thermal conductivity dropped. Furthermore, the breakdown strength of the titania nanoparticles-based virgin oil was observed to be effectively increased with the particle concentration.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019452224002632","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanofluids are prospective solutions for improving the transformer dielectric strengthby adding nanoparticles to the standard oils used in transformers.Oil-based titania nanofluids are becoming increasingly popular due to their superior insulating qualities and distinctive thermal performance, and they areconsideredas possible replacements in the domains of transformer insulating oils.This paper describes the industrial synthesis of titania nanoparticles for improving the insulating characteristics of virgin oil used in transformers.The titania nanoparticles were analyzed using an X-ray diffractogram (XRD), which revealed a prominent peak at Bragg angle 25O, indicating that the titania nanoparticles were generated in the anatase phase. Fourier transform infrared (FTIR) spectroscopy study endorsed the formation of Ti-O-Ti, Ti-OH, C-H and O-H stretching vibrations at 760 cm−1, 1345 cm−1, 2475 cm−1, and 3646 cm−1 wavenumbers respectively. Field emission scanning electron microscopy (FESEM) and Atomic Force Microscopy (AFM) examinations on the produced titania nanoparticles revealed that the particles had a circular shape with a diameter of 55 nm and an average roughness value of roughly 3.6 nm respectively.The viscosity of the host virgin oil and the nanoparticles-filled nanofluid were examined, and higher viscosity values were found as particle concentration increased.The effective conductivity study with the zeta potential and thermal conductivity fluctuation with temperature variation also revealed that at higher temperatures, conductivity with the zeta potential increased and thermal conductivity dropped. Furthermore, the breakdown strength of the titania nanoparticles-based virgin oil was observed to be effectively increased with the particle concentration.
期刊介绍:
The Journal of the Indian Chemical Society publishes original, fundamental, theorical, experimental research work of highest quality in all areas of chemistry, biochemistry, medicinal chemistry, electrochemistry, agrochemistry, chemical engineering and technology, food chemistry, environmental chemistry, etc.