{"title":"Fabrication of carbon-supported Al2O3 nanoparticles via spontaneous cross-linking to enhance selective hydrogenation of furfural","authors":"","doi":"10.1016/j.jechem.2024.08.059","DOIUrl":null,"url":null,"abstract":"<div><div>Selective hydrogenation of furfural to furfuryl alcohol is a great challenge in the hydrogenation field due to thermodynamic preference for hydrogenation of C<img>C over C<img>O. Herein, a novel Al<sub>2</sub>O<sub>3</sub>/C-u hybrid catalyst, composed of N-modified dendritic carbon networks supporting Al<sub>2</sub>O<sub>3</sub> nanoparticles, was successfully prepared via carbonizing the freeze-dried gel from spontaneous cross-linking of alginate, Al<sup>3+</sup> and urea<sub>.</sub> The obtained carbon-supported Al<sub>2</sub>O<sub>3</sub> hybrid catalyst has a high ratio (31%) of Al species in pentahedral-coordinated state. The introduction of urea enhances the surface N content, the ratio of pyrrolic N, and specific surface area of catalyst, leading to improved adsorption capacity of C<img>O and the accessibility of active sites. In the furfural hydrogenation reaction with isopropyl alcohol as hydrogen donor, Al<sub>2</sub>O<sub>3</sub>/C-u catalyst achieved a 90% conversion of furfural with 98.0% selectivity to furfuryl alcohol, outperforming that of commercial γ-Al<sub>2</sub>O<sub>3</sub>. Moreover, Al<sub>2</sub>O<sub>3</sub>/C-u demonstrates excellent catalytic stability in the recycling tests attributed to the synergistic effect of abundant weak Lewis acid sites and the anchoring effect of the carbon network on Al<sub>2</sub>O<sub>3</sub> nanoparticles. This work provides an innovative and facile strategy for fabrication of carbon-supported Al<sub>2</sub>O<sub>3</sub> hybrid catalysts with rich Al<sup>V</sup> species, serving as a high selective hydrogenation catalyst through MPV reaction route.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495624006156","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
Selective hydrogenation of furfural to furfuryl alcohol is a great challenge in the hydrogenation field due to thermodynamic preference for hydrogenation of CC over CO. Herein, a novel Al2O3/C-u hybrid catalyst, composed of N-modified dendritic carbon networks supporting Al2O3 nanoparticles, was successfully prepared via carbonizing the freeze-dried gel from spontaneous cross-linking of alginate, Al3+ and urea. The obtained carbon-supported Al2O3 hybrid catalyst has a high ratio (31%) of Al species in pentahedral-coordinated state. The introduction of urea enhances the surface N content, the ratio of pyrrolic N, and specific surface area of catalyst, leading to improved adsorption capacity of CO and the accessibility of active sites. In the furfural hydrogenation reaction with isopropyl alcohol as hydrogen donor, Al2O3/C-u catalyst achieved a 90% conversion of furfural with 98.0% selectivity to furfuryl alcohol, outperforming that of commercial γ-Al2O3. Moreover, Al2O3/C-u demonstrates excellent catalytic stability in the recycling tests attributed to the synergistic effect of abundant weak Lewis acid sites and the anchoring effect of the carbon network on Al2O3 nanoparticles. This work provides an innovative and facile strategy for fabrication of carbon-supported Al2O3 hybrid catalysts with rich AlV species, serving as a high selective hydrogenation catalyst through MPV reaction route.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy