Celal Cakiroglu , Tanvir Hassan Tusher , Md. Shahjalal , Kamrul Islam , AHM Muntasir Billah , Moncef L. Nehdi
{"title":"Explainable ensemble learning graphical user interface for predicting rebar bond strength and failure mode in recycled coarse aggregate concrete","authors":"Celal Cakiroglu , Tanvir Hassan Tusher , Md. Shahjalal , Kamrul Islam , AHM Muntasir Billah , Moncef L. Nehdi","doi":"10.1016/j.dibe.2024.100547","DOIUrl":null,"url":null,"abstract":"<div><div>Novel study deploys robust machine learning algorithms using newly built comprehensive dataset to predict reinforcing rebar-to-recycled coarse aggregate concrete (RCA) bond strength and failure mode. Prior investigations have solely concentrated on bond strength, resulting in a limited comprehension of the bond failure pattern. Considering the increasing significance of sustainable construction methods, it is crucial to examine both the failure pattern and bond strength to expand the versatility of RCA in various reinforced concrete structures. Accordingly, XGBoost, CatBoost, Random Forest, and LightGBM were trained for this purpose. Model performance was appraised using various statistical metrics, while failure classification performance was assessed using accuracy, recall, and precision indicators. Model performance was ranked using Copeland's algorithm. Feature importance was quantified using SHAP. Coefficient of determination of 0.91 was achieved by XGBoost in predicting bond strength, outperforming other nine analytical models in literature. Failure mode was predicted with accuracy of 94% by CatBoost, XGBoost, and LightGBM. Embedment length and compressive strength features had greatest influence on bond strength and failure mode, respectively. User-friendly graphical interface was developed to harvest ML models in real-world engineering practice. Online free access accurately assigns to any given combination of input features corresponding accurate rebar bond strength and failure mode.</div></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"20 ","pages":"Article 100547"},"PeriodicalIF":6.2000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266616592400228X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Novel study deploys robust machine learning algorithms using newly built comprehensive dataset to predict reinforcing rebar-to-recycled coarse aggregate concrete (RCA) bond strength and failure mode. Prior investigations have solely concentrated on bond strength, resulting in a limited comprehension of the bond failure pattern. Considering the increasing significance of sustainable construction methods, it is crucial to examine both the failure pattern and bond strength to expand the versatility of RCA in various reinforced concrete structures. Accordingly, XGBoost, CatBoost, Random Forest, and LightGBM were trained for this purpose. Model performance was appraised using various statistical metrics, while failure classification performance was assessed using accuracy, recall, and precision indicators. Model performance was ranked using Copeland's algorithm. Feature importance was quantified using SHAP. Coefficient of determination of 0.91 was achieved by XGBoost in predicting bond strength, outperforming other nine analytical models in literature. Failure mode was predicted with accuracy of 94% by CatBoost, XGBoost, and LightGBM. Embedment length and compressive strength features had greatest influence on bond strength and failure mode, respectively. User-friendly graphical interface was developed to harvest ML models in real-world engineering practice. Online free access accurately assigns to any given combination of input features corresponding accurate rebar bond strength and failure mode.
期刊介绍:
Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.