Buse Unlu , Maria Isabel Álvarez-Castaño , Antoine Boniface , Ye Pu , Christophe Moser
{"title":"Single-photon-assisted two-photon polymerization","authors":"Buse Unlu , Maria Isabel Álvarez-Castaño , Antoine Boniface , Ye Pu , Christophe Moser","doi":"10.1016/j.addma.2024.104455","DOIUrl":null,"url":null,"abstract":"<div><div>Light-based additive manufacturing (AM) has revolutionized the fabrication of complex three-dimensional objects offering a cost-effective and high-speed alternative to traditional machining. Single-photon polymerization is a key process in this advancement, providing rapid printing time, albeit with limited resolution in the range of tens of micrometers. Two-photon polymerization provides sub-micrometer resolution but is accompanied by a tradeoff of prolonged printing times. We propose combining single- and two-photon absorption to benefit from the dual capabilities, allowing for faster printing time while maintaining high resolution. In this study, we employ a continuous-wave blue light source to pre-sensitize a photocurable resin by single-photon absorption followed by a tightly focused femtosecond laser beam to provide the required energy reaching the polymerization threshold for solidifying the resin through two-photon absorption. We first investigate the impact of pre-sensitization by blue light illumination followed by irradiation with a focused femtosecond laser beam and find that the voxel growth dynamics are markedly altered. Specifically, pre-sensitization by blue light lowers the polymerization threshold power of the femtosecond laser beam and increases the speed of voxel growth. We then exploit this effect by building a custom two-photon 3D printer in which the blue light pre-sensitization is created in a light-sheet configuration. We report successfully printed 3D objects for which the average femtosecond laser power was reduced by 28.6 % and the exposure time was reduced by a factor of two compared with polymerization performed only with the femtosecond laser beam. Additionally, a 63 % improvement in axial voxel size is attained through blue light-sheet pre-sensitization. Our theoretical analysis based on a diffusion-free model suggests that the mechanism of the pre-sensitization is oxygen depletion followed by a single-photon background latent polymerization.</div></div>","PeriodicalId":7172,"journal":{"name":"Additive manufacturing","volume":"94 ","pages":"Article 104455"},"PeriodicalIF":10.3000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Additive manufacturing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214860424005013","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Light-based additive manufacturing (AM) has revolutionized the fabrication of complex three-dimensional objects offering a cost-effective and high-speed alternative to traditional machining. Single-photon polymerization is a key process in this advancement, providing rapid printing time, albeit with limited resolution in the range of tens of micrometers. Two-photon polymerization provides sub-micrometer resolution but is accompanied by a tradeoff of prolonged printing times. We propose combining single- and two-photon absorption to benefit from the dual capabilities, allowing for faster printing time while maintaining high resolution. In this study, we employ a continuous-wave blue light source to pre-sensitize a photocurable resin by single-photon absorption followed by a tightly focused femtosecond laser beam to provide the required energy reaching the polymerization threshold for solidifying the resin through two-photon absorption. We first investigate the impact of pre-sensitization by blue light illumination followed by irradiation with a focused femtosecond laser beam and find that the voxel growth dynamics are markedly altered. Specifically, pre-sensitization by blue light lowers the polymerization threshold power of the femtosecond laser beam and increases the speed of voxel growth. We then exploit this effect by building a custom two-photon 3D printer in which the blue light pre-sensitization is created in a light-sheet configuration. We report successfully printed 3D objects for which the average femtosecond laser power was reduced by 28.6 % and the exposure time was reduced by a factor of two compared with polymerization performed only with the femtosecond laser beam. Additionally, a 63 % improvement in axial voxel size is attained through blue light-sheet pre-sensitization. Our theoretical analysis based on a diffusion-free model suggests that the mechanism of the pre-sensitization is oxygen depletion followed by a single-photon background latent polymerization.
期刊介绍:
Additive Manufacturing stands as a peer-reviewed journal dedicated to delivering high-quality research papers and reviews in the field of additive manufacturing, serving both academia and industry leaders. The journal's objective is to recognize the innovative essence of additive manufacturing and its diverse applications, providing a comprehensive overview of current developments and future prospects.
The transformative potential of additive manufacturing technologies in product design and manufacturing is poised to disrupt traditional approaches. In response to this paradigm shift, a distinctive and comprehensive publication outlet was essential. Additive Manufacturing fulfills this need, offering a platform for engineers, materials scientists, and practitioners across academia and various industries to document and share innovations in these evolving technologies.