Exploring interfacial stability for Zr-doped sulfide solid electrolyte with first-principle calculation

IF 2.4 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Exploring interfacial stability for Zr-doped sulfide solid electrolyte with first-principle calculation","authors":"","doi":"10.1016/j.cap.2024.09.009","DOIUrl":null,"url":null,"abstract":"<div><div>First-principles calculations are employed to investigate the interfacial properties on the Zr-doped sulfide solid electrolytes. Theoretical calculation results show that the PS<sub>4</sub> tetrahedral structure near the Li/Li<sub>3</sub>PS<sub>4</sub> interface is severely damaged, whereas the Zr-doped sulfide solid electrolyte interface structure has a slight deformation. The Li ions migration energy barrier on the Zr-doped sulfide solid electrolyte interface is relatively lower than that on the Li/Li<sub>3</sub>PS<sub>4</sub>. Moreover, the stress-strain analysis indicates that the Li/Li<sub>3</sub>PS<sub>4</sub> interface structure experiences a maximum strain of only 6 %, while the Zr-doped sulfide solid electrolyte interface structure experiences a maximum strain of 10 %. This may be attributed to the ability of Zr doping to prevent S<sup>2−</sup> diffusion into the lithium metal anode and stabilize the Li ion transport skeleton. Therefore, Zr doping can improve the interface structure stability. This study will provide a useful perspective for designing high performance of solid electrolytes for the application of all-solid-state batteries.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173924002098","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

First-principles calculations are employed to investigate the interfacial properties on the Zr-doped sulfide solid electrolytes. Theoretical calculation results show that the PS4 tetrahedral structure near the Li/Li3PS4 interface is severely damaged, whereas the Zr-doped sulfide solid electrolyte interface structure has a slight deformation. The Li ions migration energy barrier on the Zr-doped sulfide solid electrolyte interface is relatively lower than that on the Li/Li3PS4. Moreover, the stress-strain analysis indicates that the Li/Li3PS4 interface structure experiences a maximum strain of only 6 %, while the Zr-doped sulfide solid electrolyte interface structure experiences a maximum strain of 10 %. This may be attributed to the ability of Zr doping to prevent S2− diffusion into the lithium metal anode and stabilize the Li ion transport skeleton. Therefore, Zr doping can improve the interface structure stability. This study will provide a useful perspective for designing high performance of solid electrolytes for the application of all-solid-state batteries.

Abstract Image

通过第一原理计算探索掺锆硫化物固体电解质的界面稳定性
利用第一性原理计算研究了掺杂 Zr 的硫化物固体电解质的界面特性。理论计算结果表明,Li/Li3PS4界面附近的PS4四面体结构受到严重破坏,而掺Zr硫化物固体电解质界面结构则有轻微变形。掺杂 Zr 的硫化物固体电解质界面上的锂离子迁移能垒相对低于 Li/Li3PS4 界面上的能垒。此外,应力应变分析表明,Li/Li3PS4 界面结构的最大应变仅为 6%,而掺杂 Zr 的硫化物固体电解质界面结构的最大应变为 10%。这可能是由于掺杂 Zr 能够阻止 S2- 扩散到锂金属阳极并稳定锂离子传输骨架。因此,掺杂 Zr 可以提高界面结构的稳定性。这项研究将为设计高性能的固体电解质以应用于全固态电池提供一个有用的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Applied Physics
Current Applied Physics 物理-材料科学:综合
CiteScore
4.80
自引率
0.00%
发文量
213
审稿时长
33 days
期刊介绍: Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications. Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques. Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals. Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review. The Journal is owned by the Korean Physical Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信