Jaewon Lee , Kyoungtae Park , Su Min Oh , Byeong Seok Kim , Hye In Kang , Sung-Hyeon Baeck , Sang Eun Shim , Yingjie Qian
{"title":"Facile preparation of heptazine-covered Fe2O3 and its synergistic effect on the enhanced flame retardance of silicone rubber composite","authors":"Jaewon Lee , Kyoungtae Park , Su Min Oh , Byeong Seok Kim , Hye In Kang , Sung-Hyeon Baeck , Sang Eun Shim , Yingjie Qian","doi":"10.1016/j.coco.2024.102104","DOIUrl":null,"url":null,"abstract":"<div><div>The flammability of silicone rubber (SR) significantly limits its broad use in areas that require high flame retardancy. In this study, heptazine-covered Fe<sub>2</sub>O<sub>3</sub>, which exhibits effective flame retardancy, was prepared using simple ball milling and heat treatment, which are advantageous for large-scale production. The prepared filler was incorporated into SR. The addition of 7.02 wt% FM filler increased the thermal degradation onset temperature at 5 % weight loss from 492.5 °C for neat SR to 502.7 °C (FM 1:1 composite). Moreover, the peak heat release rate and peak smoke production rate of the FM 1:1 composite significantly decreased by 43.15 % and 68.42 %, respectively, indicating a significant enhancement in the fire safety and smoke suppression of the FM composites. The chemical, morphological, and electronic structures of the FM fillers, pyrolysis gas production, and char residue were thoroughly investigated to reveal the possible flame-retarding mechanisms of the SR composites.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"51 ","pages":"Article 102104"},"PeriodicalIF":6.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245221392400295X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
The flammability of silicone rubber (SR) significantly limits its broad use in areas that require high flame retardancy. In this study, heptazine-covered Fe2O3, which exhibits effective flame retardancy, was prepared using simple ball milling and heat treatment, which are advantageous for large-scale production. The prepared filler was incorporated into SR. The addition of 7.02 wt% FM filler increased the thermal degradation onset temperature at 5 % weight loss from 492.5 °C for neat SR to 502.7 °C (FM 1:1 composite). Moreover, the peak heat release rate and peak smoke production rate of the FM 1:1 composite significantly decreased by 43.15 % and 68.42 %, respectively, indicating a significant enhancement in the fire safety and smoke suppression of the FM composites. The chemical, morphological, and electronic structures of the FM fillers, pyrolysis gas production, and char residue were thoroughly investigated to reveal the possible flame-retarding mechanisms of the SR composites.
期刊介绍:
Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.