Harnessing microbial potential: Exploiting heavy oil-laden soil microbiota for sustainable production of high-yield rhamnolipids from waste cooking oil
{"title":"Harnessing microbial potential: Exploiting heavy oil-laden soil microbiota for sustainable production of high-yield rhamnolipids from waste cooking oil","authors":"","doi":"10.1016/j.bcab.2024.103371","DOIUrl":null,"url":null,"abstract":"<div><div>Oil polluted soil microbiota plays an important role in the production of biosurfactants. In comparison to synthetic surfactants, biosurfactants offer unique advantages, such as lower toxicity, biodegradability, selectivity, and effectiveness under unpleasant conditions. Despite these benefits, the widespread use of biosurfactants is limited by enormous production costs. To address this challenge, this study aimed to explore the adoption of waste cooking for rhamnolipids production. Two prominent bacterial strains: <em>Kosakonia cowanni</em> and <em>Acinetobacter colcoaceticus,</em> were obtained from heavy oil-laden soil samples, and further demonstrated their capability for rhamnolipids production from waste cooking oil (<em>Acinetobacter colcoaceticus</em>: 0.51 g/L, <em>Kosakonia cowanii</em>: 0.39 g/L). The biosurfactants obtained were characterized through TLC, FTIR, and H NMR to confirm their rhamnolipid identities as mono-rhamnolipids. The findings in our study emphasizes the potential of cost-effective production of rhamnolipids that possess interesting biotechnological features through the synergy of oil-polluted environments and waste cooking oil. This study contributes significantly to the development of sustainable rhamnolipid production using non-pathogenic strains. By harnessing these microorganisms, we advance towards addressing critical environmental challenges, such as heavy metal contamination in water. This research aligns with broader sustainability goals, including clean water and sanitation.</div></div>","PeriodicalId":8774,"journal":{"name":"Biocatalysis and agricultural biotechnology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biocatalysis and agricultural biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878818124003554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Oil polluted soil microbiota plays an important role in the production of biosurfactants. In comparison to synthetic surfactants, biosurfactants offer unique advantages, such as lower toxicity, biodegradability, selectivity, and effectiveness under unpleasant conditions. Despite these benefits, the widespread use of biosurfactants is limited by enormous production costs. To address this challenge, this study aimed to explore the adoption of waste cooking for rhamnolipids production. Two prominent bacterial strains: Kosakonia cowanni and Acinetobacter colcoaceticus, were obtained from heavy oil-laden soil samples, and further demonstrated their capability for rhamnolipids production from waste cooking oil (Acinetobacter colcoaceticus: 0.51 g/L, Kosakonia cowanii: 0.39 g/L). The biosurfactants obtained were characterized through TLC, FTIR, and H NMR to confirm their rhamnolipid identities as mono-rhamnolipids. The findings in our study emphasizes the potential of cost-effective production of rhamnolipids that possess interesting biotechnological features through the synergy of oil-polluted environments and waste cooking oil. This study contributes significantly to the development of sustainable rhamnolipid production using non-pathogenic strains. By harnessing these microorganisms, we advance towards addressing critical environmental challenges, such as heavy metal contamination in water. This research aligns with broader sustainability goals, including clean water and sanitation.
期刊介绍:
Biocatalysis and Agricultural Biotechnology is the official journal of the International Society of Biocatalysis and Agricultural Biotechnology (ISBAB). The journal publishes high quality articles especially in the science and technology of biocatalysis, bioprocesses, agricultural biotechnology, biomedical biotechnology, and, if appropriate, from other related areas of biotechnology. The journal will publish peer-reviewed basic and applied research papers, authoritative reviews, and feature articles. The scope of the journal encompasses the research, industrial, and commercial aspects of biotechnology, including the areas of: biocatalysis; bioprocesses; food and agriculture; genetic engineering; molecular biology; healthcare and pharmaceuticals; biofuels; genomics; nanotechnology; environment and biodiversity; and bioremediation.