T-product based ℓ1-norm tensor principal component analysis and a finite-step convergence algorithm

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Xianpeng Mao , Yuning Yang
{"title":"T-product based ℓ1-norm tensor principal component analysis and a finite-step convergence algorithm","authors":"Xianpeng Mao ,&nbsp;Yuning Yang","doi":"10.1016/j.aml.2024.109318","DOIUrl":null,"url":null,"abstract":"<div><div>T-product based tensor principal component analysis (<span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-tPCA) was used for dimensionality reduction, data preprocessing, compression, and visualization of multivariate data. However, <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-tPCA may amplify the influence of outliers and large-magnitude noise. To explore robustness against heavily corrupted third-order data, we consider the <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-norm tPCA model (<span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-tPCA). We develop an effective proximal alternating maximization method and prove that within finitely many steps, the algorithm stops at a point satisfying certain optimality conditions. Numerical experiments on color face reconstruction and recognition demonstrate the efficiency of the proposed algorithms, confirming that <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-tPCA is more resilient to outliers compared to <span><math><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-tPCA.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"160 ","pages":"Article 109318"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003380","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

T-product based tensor principal component analysis (2-tPCA) was used for dimensionality reduction, data preprocessing, compression, and visualization of multivariate data. However, 2-tPCA may amplify the influence of outliers and large-magnitude noise. To explore robustness against heavily corrupted third-order data, we consider the 1-norm tPCA model (1-tPCA). We develop an effective proximal alternating maximization method and prove that within finitely many steps, the algorithm stops at a point satisfying certain optimality conditions. Numerical experiments on color face reconstruction and recognition demonstrate the efficiency of the proposed algorithms, confirming that 1-tPCA is more resilient to outliers compared to 2-tPCA.
基于 T 产物的 ℓ1 准则张量主成分分析和有限步收敛算法
基于 T-Product 的张量主成分分析(ℓ2-tPCA)被用于多变量数据的降维、数据预处理、压缩和可视化。然而,ℓ2-tPCA 可能会放大异常值和大振幅噪声的影响。为了探索对严重破坏的三阶数据的鲁棒性,我们考虑了 ℓ1-norm tPCA 模型(ℓ1-tPCA)。我们开发了一种有效的近似交替最大化方法,并证明在有限步内,算法会在满足特定最优条件的点上停止。对彩色人脸重建和识别的数值实验证明了所提算法的高效性,并证实与 ℓ2-tPCA 相比,ℓ1-tPCA 对异常值的抵抗力更强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信