Novel MoS2-based heterojunction as an efficient and magnetically retrievable piezo-photocatalyst for diclofenac sodium degradation

IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Xiaoling Zou , Mang Lu , Huanggen Yang , Xuejiao Wu
{"title":"Novel MoS2-based heterojunction as an efficient and magnetically retrievable piezo-photocatalyst for diclofenac sodium degradation","authors":"Xiaoling Zou ,&nbsp;Mang Lu ,&nbsp;Huanggen Yang ,&nbsp;Xuejiao Wu","doi":"10.1016/j.mtsust.2024.101000","DOIUrl":null,"url":null,"abstract":"<div><div>It is a challenging and meaningful task to design a piezo-photocatalyst with excellent performance under mild mechanical stirring conditions rather than ultrasonic irradiation. Herein, a hydraulic-driven piezo-photocatalytic process was proposed, using MoS<sub>2</sub>-based heterojunction as catalysts for diclofenac sodium (DCF) degradation. A magnetically retrievable MoS<sub>2</sub>/TiO<sub>2</sub>/Fe<sub>3</sub>O<sub>4</sub> composite was designed and successfully prepared by a facile one-step solvothermal process. Among various heterojunction composites and pure MoS<sub>2</sub>, the ternary composite MoS<sub>2</sub>/TiO<sub>2</sub>/Fe<sub>3</sub>O<sub>4</sub> exhibited the strongest piezo-photocatalysis capability, with a DCF degradation efficiency of 99.6% and a pseudo-first-order rate constant of 0.733 min<sup>−1</sup>. Additionally, the degradation efficiency of DCF was still up to 85.2% in 6 min after 5 cycles by MoS<sub>2</sub>/TiO<sub>2</sub>/Fe<sub>3</sub>O<sub>4</sub>. The ternary composite can be easily collected and separated using a magnet. There was an optimum hydraulic gradient value (0.45 s<sup>−1</sup>) for DCF degradation. <sup>•</sup>OH played a major role in DCF degradation during the hydraulic-driven piezo-photocatalytic process. A satisfactory DCF degradation was found in the actual water media. The results verify the existence of a synergetic effect between piezo and photocatalytic processes. Thereupon, the hydraulic-driven piezo-photocatalysis can be an efficient, sustainable, and energy-saving process for water treatment.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 101000"},"PeriodicalIF":7.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234724003361","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

It is a challenging and meaningful task to design a piezo-photocatalyst with excellent performance under mild mechanical stirring conditions rather than ultrasonic irradiation. Herein, a hydraulic-driven piezo-photocatalytic process was proposed, using MoS2-based heterojunction as catalysts for diclofenac sodium (DCF) degradation. A magnetically retrievable MoS2/TiO2/Fe3O4 composite was designed and successfully prepared by a facile one-step solvothermal process. Among various heterojunction composites and pure MoS2, the ternary composite MoS2/TiO2/Fe3O4 exhibited the strongest piezo-photocatalysis capability, with a DCF degradation efficiency of 99.6% and a pseudo-first-order rate constant of 0.733 min−1. Additionally, the degradation efficiency of DCF was still up to 85.2% in 6 min after 5 cycles by MoS2/TiO2/Fe3O4. The ternary composite can be easily collected and separated using a magnet. There was an optimum hydraulic gradient value (0.45 s−1) for DCF degradation. OH played a major role in DCF degradation during the hydraulic-driven piezo-photocatalytic process. A satisfactory DCF degradation was found in the actual water media. The results verify the existence of a synergetic effect between piezo and photocatalytic processes. Thereupon, the hydraulic-driven piezo-photocatalysis can be an efficient, sustainable, and energy-saving process for water treatment.
基于 MoS2 的新型异质结是一种用于降解双氯芬酸钠的高效、可磁化的压电光催化剂
设计一种在温和的机械搅拌条件下而不是在超声波照射下具有优异性能的压电光催化剂是一项具有挑战性和意义的任务。本文提出了一种液压驱动的压光催化过程,使用基于 MoS2 的异质结作为催化剂来降解双氯芬酸钠(DCF)。研究人员设计了一种可磁化的 MoS2/TiO2/Fe3O4 复合材料,并通过简单的一步溶热法成功制备了该材料。在各种异质结复合材料和纯 MoS2 中,三元复合材料 MoS2/TiO2/Fe3O4 的压光催化能力最强,其 DCF 降解效率为 99.6%,伪一阶速率常数为 0.733 min-1。此外,MoS2/TiO2/Fe3O4 对 DCF 的降解效率在 5 次循环后的 6 分钟内仍高达 85.2%。三元复合材料很容易用磁铁收集和分离。DCF 降解有一个最佳水力梯度值(0.45 s-1)。-在水力驱动的压电光催化过程中,-OH 在 DCF 降解过程中发挥了主要作用。在实际的水介质中,DCF 的降解效果令人满意。结果验证了压电和光催化过程之间存在协同效应。因此,水力驱动压电光催化是一种高效、可持续和节能的水处理工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
6.40%
发文量
174
审稿时长
32 days
期刊介绍: Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science. With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信