{"title":"Group hexavalent actinide separation from lanthanides using sodium bismuthate chromatography","authors":"","doi":"10.1016/j.chroma.2024.465400","DOIUrl":null,"url":null,"abstract":"<div><div>Advanced used nuclear fuel (UNF) reprocessing strategies are limited by the complex radiochemical separations and engineering required to achieve the separation of actinides (An) from neutron scavenging lanthanides (Ln). The accessibility of the hexavalent oxidation state for the actinides (U – Am) provides a pathway to achieving a group hexavalent actinide separation from the trivalent lanthanides and Cm. The solid oxidant and ion exchanger, sodium bismuthate (NaBiO<sub>3</sub>), has been demonstrated to quantitatively oxidize and separate Am from trivalent Cm in a column chromatographic system. This work expands on the use of NaBiO<sub>3</sub> chromatography to characterize the adsorption, kinetic, and elution behavior of U, Pu, and Eu. Separation factors over 200 with rapid kinetics were observed at dilute nitric acid concentrations with a complete An/Ln separation achieved in under an hour. The adsorption and chromatographic behavior of key fission products present in various reprocessing raffinates was characterized which demonstrated potential application of a NaBiO<sub>3</sub>-based separation following a TRUEX process.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002196732400774X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Advanced used nuclear fuel (UNF) reprocessing strategies are limited by the complex radiochemical separations and engineering required to achieve the separation of actinides (An) from neutron scavenging lanthanides (Ln). The accessibility of the hexavalent oxidation state for the actinides (U – Am) provides a pathway to achieving a group hexavalent actinide separation from the trivalent lanthanides and Cm. The solid oxidant and ion exchanger, sodium bismuthate (NaBiO3), has been demonstrated to quantitatively oxidize and separate Am from trivalent Cm in a column chromatographic system. This work expands on the use of NaBiO3 chromatography to characterize the adsorption, kinetic, and elution behavior of U, Pu, and Eu. Separation factors over 200 with rapid kinetics were observed at dilute nitric acid concentrations with a complete An/Ln separation achieved in under an hour. The adsorption and chromatographic behavior of key fission products present in various reprocessing raffinates was characterized which demonstrated potential application of a NaBiO3-based separation following a TRUEX process.
期刊介绍:
The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.