Ana R.S. Bernardino , Cristiana A.V. Torres , João G. Crespo , Maria A.M. Reis
{"title":"Assessment of in situ product recovery techniques to enhance 2-phenylethanol production by Acinetobacter soli ANG344B","authors":"Ana R.S. Bernardino , Cristiana A.V. Torres , João G. Crespo , Maria A.M. Reis","doi":"10.1016/j.bej.2024.109508","DOIUrl":null,"url":null,"abstract":"<div><div>The 2-phenylethanol (2-PE) production process by the newly isolated <em>Acinetobacter soli</em> ANG344B is limited by product toxicity. To overcome this limitation and enhance 2-PE production process, various alternatives based in <em>in situ</em> product removal (ISPR) approaches were evaluated. The approaches selected for assessment were gas stripping using the air supplied to the bioreactor, liquid-liquid extraction and adsorption. Adsorption was found to be the most promising approach to increase 2-PE production. Amberlite XAD 4 was chosen from the different adsorbents tested since it has high affinity for 2-PE, being able to adsorb 205.8 ± 8.1 mg<sub>2-PE</sub>/g<sub>dry resin</sub>. In a batch cultivation process, in presence of 3 % (dry w/v) of Amberlite XAD 4, <em>A. soli</em> ANG344B was able to produce 6.99 ± 0.06 g/L of 2-PE with a volumetric productivity of 0.17 ± 0.00 g/L.h, which represents an improvement of 3.3-fold. To the best of our knowledge, this is the highest 2-PE production reported for a wild-type bacteria. These findings highlight the potential of <em>Acinetobacter soli</em> ANG344B as 2-PE producer, contributing to the development of natural 2-PE production process.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"212 ","pages":"Article 109508"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X2400295X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The 2-phenylethanol (2-PE) production process by the newly isolated Acinetobacter soli ANG344B is limited by product toxicity. To overcome this limitation and enhance 2-PE production process, various alternatives based in in situ product removal (ISPR) approaches were evaluated. The approaches selected for assessment were gas stripping using the air supplied to the bioreactor, liquid-liquid extraction and adsorption. Adsorption was found to be the most promising approach to increase 2-PE production. Amberlite XAD 4 was chosen from the different adsorbents tested since it has high affinity for 2-PE, being able to adsorb 205.8 ± 8.1 mg2-PE/gdry resin. In a batch cultivation process, in presence of 3 % (dry w/v) of Amberlite XAD 4, A. soli ANG344B was able to produce 6.99 ± 0.06 g/L of 2-PE with a volumetric productivity of 0.17 ± 0.00 g/L.h, which represents an improvement of 3.3-fold. To the best of our knowledge, this is the highest 2-PE production reported for a wild-type bacteria. These findings highlight the potential of Acinetobacter soli ANG344B as 2-PE producer, contributing to the development of natural 2-PE production process.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.