Jun Bi , Chaozheng Shen , Guoxu Wang , Zhijian Wu , Sheng Yang , Jianguo Lu , Gaochao Lin
{"title":"A new method to estimate the soil freezing characteristic curve","authors":"Jun Bi , Chaozheng Shen , Guoxu Wang , Zhijian Wu , Sheng Yang , Jianguo Lu , Gaochao Lin","doi":"10.1016/j.coldregions.2024.104334","DOIUrl":null,"url":null,"abstract":"<div><div>The soil freezing characteristic curve (SFCC) defines the relationship between unfrozen water content and temperature. It is an important soil parameter in cold regions, but it is not easy to obtain, especially in the field. This paper proposes a method to indirectly estimate the SFCC for both fine-grained and coarse-grained soils by using the one-measurement SFCC method. From regression analysis, the parameters of the van Genuchten SFCC model can be expressed as functions of an adjustable parameter <em>x</em>. The SFCC of a soil sample contained three different zones, and sensitivity analysis indicated that the measured point in Zone 2 provided the most reliable SFCC estimation results. The proposed model and four widely acknowledged models were compared and evaluated with 33 fine-grained soils and 9 coarse-grained soils. The results showed that the proposed model provided the best estimation of the SFCC among the five models. This result also indicated that the proposed model provided a better estimation of the SFCC for fine-grained soils. This study provides a reliable approach to develop an SFCC estimation model with the one-measurement SFCC method.</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":"228 ","pages":"Article 104334"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X24002155","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The soil freezing characteristic curve (SFCC) defines the relationship between unfrozen water content and temperature. It is an important soil parameter in cold regions, but it is not easy to obtain, especially in the field. This paper proposes a method to indirectly estimate the SFCC for both fine-grained and coarse-grained soils by using the one-measurement SFCC method. From regression analysis, the parameters of the van Genuchten SFCC model can be expressed as functions of an adjustable parameter x. The SFCC of a soil sample contained three different zones, and sensitivity analysis indicated that the measured point in Zone 2 provided the most reliable SFCC estimation results. The proposed model and four widely acknowledged models were compared and evaluated with 33 fine-grained soils and 9 coarse-grained soils. The results showed that the proposed model provided the best estimation of the SFCC among the five models. This result also indicated that the proposed model provided a better estimation of the SFCC for fine-grained soils. This study provides a reliable approach to develop an SFCC estimation model with the one-measurement SFCC method.
期刊介绍:
Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere.
Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost.
Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.