{"title":"Sobolev smoothing estimates for bilinear maximal operators with fractal dilation sets","authors":"Tainara Borges , Benjamin Foster , Yumeng Ou","doi":"10.1016/j.jfa.2024.110694","DOIUrl":null,"url":null,"abstract":"<div><div>Given a hypersurface <span><math><mi>S</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn><mi>d</mi></mrow></msup></math></span>, we study the bilinear averaging operator that averages a pair of functions over <em>S</em>, as well as more general bilinear multipliers of limited decay and various maximal analogs. Of particular interest are bilinear maximal operators associated to a fractal dilation set <span><math><mi>E</mi><mo>⊂</mo><mo>[</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></math></span>; in this case, the boundedness region of the maximal operator is associated to the geometry of the hypersurface and various notions of the dimension of the dilation set. In particular, we determine Sobolev smoothing estimates at the exponent <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>×</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> using Fourier-analytic methods, which allow us to deduce additional <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> improving bounds for the operators and sparse bounds and their weighted corollaries for the associated multi-scale maximal functions. We also extend the method to study analogues of these questions for the triangle averaging operator and biparameter averaging operators. In addition, some necessary conditions for boundedness of these operators are obtained.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 2","pages":"Article 110694"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003823","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given a hypersurface , we study the bilinear averaging operator that averages a pair of functions over S, as well as more general bilinear multipliers of limited decay and various maximal analogs. Of particular interest are bilinear maximal operators associated to a fractal dilation set ; in this case, the boundedness region of the maximal operator is associated to the geometry of the hypersurface and various notions of the dimension of the dilation set. In particular, we determine Sobolev smoothing estimates at the exponent using Fourier-analytic methods, which allow us to deduce additional improving bounds for the operators and sparse bounds and their weighted corollaries for the associated multi-scale maximal functions. We also extend the method to study analogues of these questions for the triangle averaging operator and biparameter averaging operators. In addition, some necessary conditions for boundedness of these operators are obtained.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis