The central limit theorems for integrable Hamiltonian systems perturbed by white noise

IF 2.4 2区 数学 Q1 MATHEMATICS
Chen Wang , Yong Li
{"title":"The central limit theorems for integrable Hamiltonian systems perturbed by white noise","authors":"Chen Wang ,&nbsp;Yong Li","doi":"10.1016/j.jde.2024.09.047","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the dynamics of integrable stochastic Hamiltonian systems. Utilizing the Nagaev-Guivarc'h method, we obtain several generalized results of the central limit theorem. Making use of this technique and the Birkhoff ergodic theorem, we prove that the invariant tori persist under stochastic perturbations. Moreover, they asymptotically follow a Gaussian distribution, which gives a positive answer to the stability of integrable stochastic Hamiltonian systems over time. Our results hold true for both Gaussian and non-Gaussian noises, and their intensities can be not small.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006326","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the dynamics of integrable stochastic Hamiltonian systems. Utilizing the Nagaev-Guivarc'h method, we obtain several generalized results of the central limit theorem. Making use of this technique and the Birkhoff ergodic theorem, we prove that the invariant tori persist under stochastic perturbations. Moreover, they asymptotically follow a Gaussian distribution, which gives a positive answer to the stability of integrable stochastic Hamiltonian systems over time. Our results hold true for both Gaussian and non-Gaussian noises, and their intensities can be not small.
受白噪声扰动的可积分哈密顿系统的中心极限定理
在本文中,我们考虑了可积分随机哈密尔顿系统的动力学问题。利用 Nagaev-Guivarc'h 方法,我们得到了中心极限定理的几个广义结果。利用这一技术和伯克霍夫遍历定理,我们证明了不变环在随机扰动下持续存在。此外,它们渐近地服从高斯分布,这给出了可积分随机哈密顿系统随时间变化的稳定性的正面答案。我们的结果对高斯和非高斯噪声都适用,而且它们的强度可以不小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信