Sobolev instability in the cubic NLS equation with convolution potentials on irrational tori

IF 2.4 2区 数学 Q1 MATHEMATICS
Filippo Giuliani
{"title":"Sobolev instability in the cubic NLS equation with convolution potentials on irrational tori","authors":"Filippo Giuliani","doi":"10.1016/j.jde.2024.09.044","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we prove the existence of solutions to the cubic NLS equation with convolution potentials on two dimensional irrational tori undergoing an arbitrarily large growth of Sobolev norms as time evolves. Our results apply also to the case of square (and rational) tori. We weaken the regularity assumptions on the convolution potentials, required in a previous work by Guardia (2014) <span><span>[11]</span></span> for the square case, to obtain the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></math></span>-instability (<span><math><mi>s</mi><mo>&gt;</mo><mn>1</mn></math></span>) of the elliptic equilibrium <span><math><mi>u</mi><mo>=</mo><mn>0</mn></math></span>. We also provide the existence of solutions <span><math><mi>u</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> with arbitrarily small <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm which achieve a prescribed growth, say <span><math><msub><mrow><mo>‖</mo><mi>u</mi><mo>(</mo><mi>T</mi><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></mrow></msub><mo>≥</mo><mi>K</mi><msub><mrow><mo>‖</mo><mi>u</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>‖</mo></mrow><mrow><msup><mrow><mi>H</mi></mrow><mrow><mi>s</mi></mrow></msup></mrow></msub></math></span>, <span><math><mi>K</mi><mo>≫</mo><mn>1</mn></math></span>, within a time <em>T</em> satisfying polynomial estimates, namely <span><math><mn>0</mn><mo>&lt;</mo><mi>T</mi><mo>&lt;</mo><msup><mrow><mi>K</mi></mrow><mrow><mi>c</mi></mrow></msup></math></span> for some <span><math><mi>c</mi><mo>&gt;</mo><mn>0</mn></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1-27"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006296","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we prove the existence of solutions to the cubic NLS equation with convolution potentials on two dimensional irrational tori undergoing an arbitrarily large growth of Sobolev norms as time evolves. Our results apply also to the case of square (and rational) tori. We weaken the regularity assumptions on the convolution potentials, required in a previous work by Guardia (2014) [11] for the square case, to obtain the Hs-instability (s>1) of the elliptic equilibrium u=0. We also provide the existence of solutions u(t) with arbitrarily small L2 norm which achieve a prescribed growth, say u(T)HsKu(0)Hs, K1, within a time T satisfying polynomial estimates, namely 0<T<Kc for some c>0.
无理环上具有卷积势的立方 NLS 方程中的索波列夫不稳定性
在本文中,我们证明了二维无理环上具有卷积势的立方 NLS 方程的解的存在性,随着时间的推移,这些解的索波列夫规范会发生任意大的增长。我们的结果也适用于平方(和有理)环的情况。我们弱化了 Guardia(2014)[11] 之前针对正方形情形的工作中所要求的卷积势的正则性假设,从而得到了椭圆均衡 u=0 的 Hs-不稳定性 (s>1)。我们还提供了具有任意小 L2 准则的解 u(t)的存在性,这些解在满足多项式估计(即 0<T<Kc for some c>0)的时间 T 内实现了规定增长,即‖u(T)‖Hs≥K‖u(0)‖Hs, K≫1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信