Density Functional Theory and Machine Learning of Transition Metals in Mo2C for Gas Sensors

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Weiguang Huang, Zhongzhou Dong* and Long Lin, 
{"title":"Density Functional Theory and Machine Learning of Transition Metals in Mo2C for Gas Sensors","authors":"Weiguang Huang,&nbsp;Zhongzhou Dong* and Long Lin,&nbsp;","doi":"10.1021/acsanm.4c0427410.1021/acsanm.4c04274","DOIUrl":null,"url":null,"abstract":"<p >Gas accumulation is the primary cause of explosions in underground mines, and preventing it requires effective gas detection. To address this, we propose an approach combining machine learning (ML) and density functional theory (DFT) for designing nanoscale gas sensors. Our study demonstrates that a back-propagation neural network (BPNN) model, optimized with suitable hyperparameters, achieves high accuracy with an R<sup>2</sup> (coefficient of determination) of 0.92 and a low RMSE (root-mean-square error) of 0.24 in predicting the substrate material formed by transition metal (TM)-doped Mo<sub>2</sub>C and its interaction with key gas molecules (CO, H<sub>2</sub>S, CH<sub>4</sub>, and C<sub>2</sub>H<sub>6</sub>). Based on these interaction strengths, we have analyzed the materials in more depth. Additionally, we find that certain features directly affect the increase or decrease of interaction strengths within a specific range, providing insights that contribute to the design of more efficient nanoscale sensors.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c04274","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Gas accumulation is the primary cause of explosions in underground mines, and preventing it requires effective gas detection. To address this, we propose an approach combining machine learning (ML) and density functional theory (DFT) for designing nanoscale gas sensors. Our study demonstrates that a back-propagation neural network (BPNN) model, optimized with suitable hyperparameters, achieves high accuracy with an R2 (coefficient of determination) of 0.92 and a low RMSE (root-mean-square error) of 0.24 in predicting the substrate material formed by transition metal (TM)-doped Mo2C and its interaction with key gas molecules (CO, H2S, CH4, and C2H6). Based on these interaction strengths, we have analyzed the materials in more depth. Additionally, we find that certain features directly affect the increase or decrease of interaction strengths within a specific range, providing insights that contribute to the design of more efficient nanoscale sensors.

Abstract Image

用于气体传感器的 Mo2C 中过渡金属的密度泛函理论与机器学习
瓦斯积聚是地下矿井爆炸的主要原因,而防止瓦斯积聚需要有效的瓦斯检测。为此,我们提出了一种结合机器学习(ML)和密度泛函理论(DFT)的方法,用于设计纳米级瓦斯传感器。我们的研究表明,在预测由过渡金属 (TM) 掺杂的 Mo2C 形成的基底材料及其与关键气体分子(CO、H2S、CH4 和 C2H6)的相互作用时,采用适当超参数优化的反向传播神经网络 (BPNN) 模型实现了 0.92 的高精度 R2(判定系数)和 0.24 的低 RMSE(均方根误差)。基于这些相互作用强度,我们对材料进行了更深入的分析。此外,我们还发现某些特征会直接影响特定范围内相互作用强度的增减,这为设计更高效的纳米级传感器提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信