Quantum Rectification Based on Room Temperature Multidirectional Nonlinearity in Bi2Te3

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dushyant Kumar, Raghav Sharma, Fei Wang, Yakun Liu, Shishun Zhao, Hyunsoo Yang
{"title":"Quantum Rectification Based on Room Temperature Multidirectional Nonlinearity in Bi2Te3","authors":"Dushyant Kumar, Raghav Sharma, Fei Wang, Yakun Liu, Shishun Zhao, Hyunsoo Yang","doi":"10.1021/acs.nanolett.4c03517","DOIUrl":null,"url":null,"abstract":"Recent interest in quantum nonlinearity has spurred the development of rectifiers for harvesting energy from ambient radiofrequency waves. However, these rectifiers face efficiency and bandwidth limitations at room temperature. We address these challenges by exploring Bi<sub>2</sub>Te<sub>3</sub>, a time-reversal symmetric topological quantum material. Bi<sub>2</sub>Te<sub>3</sub> exhibits robust room temperature second-order voltage generation in both the longitudinal and transverse directions. We harness these coexisting nonlinearities to design a multidirectional quantum rectifier that can simultaneously extract energy from various components of an input signal. We demonstrate the efficacy of Bi<sub>2</sub>Te<sub>3</sub>-based rectifiers across a broad frequency range, spanning from existing Wi-Fi bands (2.45 GHz) to frequencies relevant to next-generation 5G technology (27.4 GHz). Our Bi<sub>2</sub>Te<sub>3</sub>-based rectifier surpasses previous limitations by achieving a high rectification efficiency and operational frequency, alongside a low operational threshold and broadband functionality. These findings enable practical topological quantum rectifiers for high-frequency electronics and energy conversion, advancing wireless energy harvesting for next-generation communication.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03517","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Recent interest in quantum nonlinearity has spurred the development of rectifiers for harvesting energy from ambient radiofrequency waves. However, these rectifiers face efficiency and bandwidth limitations at room temperature. We address these challenges by exploring Bi2Te3, a time-reversal symmetric topological quantum material. Bi2Te3 exhibits robust room temperature second-order voltage generation in both the longitudinal and transverse directions. We harness these coexisting nonlinearities to design a multidirectional quantum rectifier that can simultaneously extract energy from various components of an input signal. We demonstrate the efficacy of Bi2Te3-based rectifiers across a broad frequency range, spanning from existing Wi-Fi bands (2.45 GHz) to frequencies relevant to next-generation 5G technology (27.4 GHz). Our Bi2Te3-based rectifier surpasses previous limitations by achieving a high rectification efficiency and operational frequency, alongside a low operational threshold and broadband functionality. These findings enable practical topological quantum rectifiers for high-frequency electronics and energy conversion, advancing wireless energy harvesting for next-generation communication.

Abstract Image

基于 Bi2Te3 中室温多向非线性的量子整流
最近,人们对量子非线性的兴趣推动了从环境射频波中收集能量的整流器的发展。然而,这些整流器在室温下面临着效率和带宽的限制。我们通过探索一种时间反转对称拓扑量子材料 Bi2Te3 来应对这些挑战。Bi2Te3 在纵向和横向上都表现出强大的室温二阶电压生成能力。我们利用这些共存的非线性特性设计了一种多向量子整流器,可以同时从输入信号的不同成分中提取能量。我们展示了基于 Bi2Te3 的整流器在广泛频率范围内的功效,从现有的 Wi-Fi 频段(2.45 GHz)到与下一代 5G 技术相关的频率(27.4 GHz)。我们基于 Bi2Te3 的整流器超越了以往的限制,实现了较高的整流效率和工作频率,以及较低的工作阈值和宽带功能。这些发现使拓扑量子整流器能够用于高频电子器件和能量转换,从而推动下一代通信的无线能量收集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信