SpaTopic: A statistical learning framework for exploring tumor spatial architecture from spatially resolved transcriptomic data

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yuelei Zhang, Bianjiong Yu, Wenxuan Ming, Xiaolong Zhou, Jin Wang, Dijun Chen
{"title":"SpaTopic: A statistical learning framework for exploring tumor spatial architecture from spatially resolved transcriptomic data","authors":"Yuelei Zhang,&nbsp;Bianjiong Yu,&nbsp;Wenxuan Ming,&nbsp;Xiaolong Zhou,&nbsp;Jin Wang,&nbsp;Dijun Chen","doi":"10.1126/sciadv.adp4942","DOIUrl":null,"url":null,"abstract":"<div >Tumor tissues exhibit a complex spatial architecture within the tumor microenvironment (TME). Spatially resolved transcriptomics (SRT) is promising for unveiling the spatial structures of the TME at both cellular and molecular levels, but identifying pathology-relevant spatial domains remains challenging. Here, we introduce SpaTopic, a statistical learning framework that harmonizes spot clustering and cell-type deconvolution by integrating single-cell transcriptomics and SRT data. Through topic modeling, SpaTopic stratifies the TME into spatial domains with coherent cellular organization, facilitating refined annotation of the spatial architecture with improved performance. We assess SpaTopic across various tumor types and show accurate prediction of tertiary lymphoid structures and tumor boundaries. Moreover, marker genes derived from SpaTopic are transferrable and can be applied to mark spatial domains in other datasets. In addition, SpaTopic enables quantitative comparison and functional characterization of spatial domains across SRT datasets. Overall, SpaTopic presents an innovative analytical framework for exploring, comparing, and interpreting tumor SRT data.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"10 39","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adp4942","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adp4942","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Tumor tissues exhibit a complex spatial architecture within the tumor microenvironment (TME). Spatially resolved transcriptomics (SRT) is promising for unveiling the spatial structures of the TME at both cellular and molecular levels, but identifying pathology-relevant spatial domains remains challenging. Here, we introduce SpaTopic, a statistical learning framework that harmonizes spot clustering and cell-type deconvolution by integrating single-cell transcriptomics and SRT data. Through topic modeling, SpaTopic stratifies the TME into spatial domains with coherent cellular organization, facilitating refined annotation of the spatial architecture with improved performance. We assess SpaTopic across various tumor types and show accurate prediction of tertiary lymphoid structures and tumor boundaries. Moreover, marker genes derived from SpaTopic are transferrable and can be applied to mark spatial domains in other datasets. In addition, SpaTopic enables quantitative comparison and functional characterization of spatial domains across SRT datasets. Overall, SpaTopic presents an innovative analytical framework for exploring, comparing, and interpreting tumor SRT data.

Abstract Image

SpaTopic:从空间解析转录组数据中探索肿瘤空间结构的统计学习框架
肿瘤组织在肿瘤微环境(TME)中呈现出复杂的空间结构。空间分辨转录组学(SRT)有望在细胞和分子水平上揭示肿瘤微环境的空间结构,但识别病理学相关的空间域仍具有挑战性。在此,我们介绍一种统计学习框架 SpaTopic,它通过整合单细胞转录组学和 SRT 数据,协调了斑点聚类和细胞类型解卷积。通过主题建模,SpaTopic 将 TME 分层为具有连贯细胞组织的空间域,从而促进了空间结构的精细注释并提高了性能。我们评估了 SpaTopic 在各种肿瘤类型中的应用,结果表明它能准确预测三级淋巴结构和肿瘤边界。此外,从 SpaTopic 中提取的标记基因具有可移植性,可用于标记其他数据集中的空间域。此外,SpaTopic 还能对不同 SRT 数据集的空间域进行定量比较和功能表征。总之,SpaTopic 为探索、比较和解释肿瘤 SRT 数据提供了一个创新的分析框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信