{"title":"Cyclotron Radiation Emission Spectroscopy","authors":"Noah S. Oblath, Brent A. VanDevender","doi":"10.1146/annurev-nucl-120523-021323","DOIUrl":null,"url":null,"abstract":"Major advances in experimental nuclear and particle physics are often motivated by the need to answer challenging questions. In 2009, Monreal and Formaggio were motivated by the problem of measuring the absolute mass of the neutrino to propose the technique that would come to be called cyclotron radiation emission spectroscopy (CRES). They needed to measure the energies of the electrons from tritium beta decay with extremely high precision, which could be achieved by measuring the frequency of the cyclotron radiation from many individual magnetically trapped electrons. The technique was put into practice first by the Project 8 Collaboration and then by the He6-CRES Collaboration for the study of nonstandard weak interactions. In this review, we present the CRES experiments that have been performed to date, describe the phenomenology of CRES that has so far been explored, and cover potential applications of CRES that have been proposed.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":"217 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Nuclear and Particle Science","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-nucl-120523-021323","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Major advances in experimental nuclear and particle physics are often motivated by the need to answer challenging questions. In 2009, Monreal and Formaggio were motivated by the problem of measuring the absolute mass of the neutrino to propose the technique that would come to be called cyclotron radiation emission spectroscopy (CRES). They needed to measure the energies of the electrons from tritium beta decay with extremely high precision, which could be achieved by measuring the frequency of the cyclotron radiation from many individual magnetically trapped electrons. The technique was put into practice first by the Project 8 Collaboration and then by the He6-CRES Collaboration for the study of nonstandard weak interactions. In this review, we present the CRES experiments that have been performed to date, describe the phenomenology of CRES that has so far been explored, and cover potential applications of CRES that have been proposed.
期刊介绍:
The Annual Review of Nuclear and Particle Science is a publication that has been available since 1952. It focuses on various aspects of nuclear and particle science, including both theoretical and experimental developments. The journal covers topics such as nuclear structure, heavy ion interactions, oscillations observed in solar and atmospheric neutrinos, the physics of heavy quarks, the impact of particle and nuclear physics on astroparticle physics, and recent advancements in accelerator design and instrumentation.
One significant recent change in the journal is the conversion of its current volume from gated to open access. This conversion was made possible through Annual Reviews' Subscribe to Open program. As a result, all articles published in the current volume are now freely available to the public under a CC BY license. This change allows for greater accessibility and dissemination of research in the field of nuclear and particle science.