{"title":"Multiwavelength and Multimessenger Counterparts of Fast Radio Bursts","authors":"Bing Zhang","doi":"10.1146/annurev-nucl-102020-124444","DOIUrl":null,"url":null,"abstract":"Fast radio bursts (FRBs) are brief, highly dispersed bursts detected in the radio band that originate from cosmological distances. The only such event detected in the Milky Way Galaxy, FRB 20200428D—which was associated with an X-ray burst emitted by a magnetar named SGR J1935+2154—revealed the first case of a multiwavelength counterpart of an FRB. Counterparts in other wavelengths accompanying or following FRBs, as well as the bright emission associated with the progenitor of the FRB engine, have been proposed in various FRB models, but no robust detection has been made so far. In general, FRBs as we know them are not favored multimessenger emitters. Nonetheless, possible neutrino and gravitational wave emission signals associated with FRBs or FRB-like events have been discussed in the literature. Here I review these suggested multiwavelength and multimessenger counterparts of FRBs or FRB-like events and the observational progress in searching for these signals. Topics include multiwavelength (X-rays, γ-rays, optical) emission and neutrino emission from FRBs within the framework of the magnetar source models and possible FRB-like events associated with gravitational waves.","PeriodicalId":8090,"journal":{"name":"Annual Review of Nuclear and Particle Science","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Nuclear and Particle Science","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1146/annurev-nucl-102020-124444","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Fast radio bursts (FRBs) are brief, highly dispersed bursts detected in the radio band that originate from cosmological distances. The only such event detected in the Milky Way Galaxy, FRB 20200428D—which was associated with an X-ray burst emitted by a magnetar named SGR J1935+2154—revealed the first case of a multiwavelength counterpart of an FRB. Counterparts in other wavelengths accompanying or following FRBs, as well as the bright emission associated with the progenitor of the FRB engine, have been proposed in various FRB models, but no robust detection has been made so far. In general, FRBs as we know them are not favored multimessenger emitters. Nonetheless, possible neutrino and gravitational wave emission signals associated with FRBs or FRB-like events have been discussed in the literature. Here I review these suggested multiwavelength and multimessenger counterparts of FRBs or FRB-like events and the observational progress in searching for these signals. Topics include multiwavelength (X-rays, γ-rays, optical) emission and neutrino emission from FRBs within the framework of the magnetar source models and possible FRB-like events associated with gravitational waves.
期刊介绍:
The Annual Review of Nuclear and Particle Science is a publication that has been available since 1952. It focuses on various aspects of nuclear and particle science, including both theoretical and experimental developments. The journal covers topics such as nuclear structure, heavy ion interactions, oscillations observed in solar and atmospheric neutrinos, the physics of heavy quarks, the impact of particle and nuclear physics on astroparticle physics, and recent advancements in accelerator design and instrumentation.
One significant recent change in the journal is the conversion of its current volume from gated to open access. This conversion was made possible through Annual Reviews' Subscribe to Open program. As a result, all articles published in the current volume are now freely available to the public under a CC BY license. This change allows for greater accessibility and dissemination of research in the field of nuclear and particle science.