Arbuscular mycorrhizal hyphae facilitate rhizobia dispersal and nodulation in legumes

Jiadong He, Lin Zhang, Judith Van Dingenen, Sandrien Desmet, Sofie Goormachtig, Maryline Calonne-Salmon, Stéphane Declerck
{"title":"Arbuscular mycorrhizal hyphae facilitate rhizobia dispersal and nodulation in legumes","authors":"Jiadong He, Lin Zhang, Judith Van Dingenen, Sandrien Desmet, Sofie Goormachtig, Maryline Calonne-Salmon, Stéphane Declerck","doi":"10.1093/ismejo/wrae185","DOIUrl":null,"url":null,"abstract":"In soil ecosystems, rhizobia occupy the rhizosphere of legume roots to form nodules, a process triggered by microbial recognition of specific root-derived signals (i.e., flavonoids). However, soil conditions can limit bacterial motility, restricting signal perception to the area directly influenced by roots. Legumes, like most plants of agricultural interest, associate with arbuscular mycorrhizal fungi, whose hyphae develop extensively in the soil, potentially providing an effective dispersal network for rhizobia. We hypothesized that mycelial networks of arbuscular mycorrhizal fungi play a role in signal transmission and act as a highway, enabling rhizobia to migrate from distant soil to the roots of leguminous plants. Using in vitro and greenhouse microcosm systems, we demonstrated that Rhizophagus irregularis helps Shinorhizobium meliloti to migrate towards the legume Medicago truncatula, triggering nodulation, a mechanism absent without the arbuscular mycorrhizal fungus. Metabolomics analysis revealed eight flavonoids unique to the compartment containing extraradical hyphae of the arbuscular mycorrhizal fungus linked to M. truncatula roots, associated with S. meliloti growth and nod gene expression. Rhizobia plated on the extraradical hyphae connecting two plants (the legume M. truncatula and non-legume Solanum tuberosum) by a common mycelium network, showed preference for the legume, suggesting the chemoattraction by specific signals transported by the fungus connected to the legume. Simultaneously, S. meliloti stimulated the cytoplasmic/protoplasmic flow in the hyphae, likely increasing the release of nutrients and signals. Our results highlight the importance of extraradical hyphae (i.e. the mycorrhizal pathway) of arbuscular mycorrhizal fungi for the migration of rhizobia over long distances to the roots, leading to nodulation.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In soil ecosystems, rhizobia occupy the rhizosphere of legume roots to form nodules, a process triggered by microbial recognition of specific root-derived signals (i.e., flavonoids). However, soil conditions can limit bacterial motility, restricting signal perception to the area directly influenced by roots. Legumes, like most plants of agricultural interest, associate with arbuscular mycorrhizal fungi, whose hyphae develop extensively in the soil, potentially providing an effective dispersal network for rhizobia. We hypothesized that mycelial networks of arbuscular mycorrhizal fungi play a role in signal transmission and act as a highway, enabling rhizobia to migrate from distant soil to the roots of leguminous plants. Using in vitro and greenhouse microcosm systems, we demonstrated that Rhizophagus irregularis helps Shinorhizobium meliloti to migrate towards the legume Medicago truncatula, triggering nodulation, a mechanism absent without the arbuscular mycorrhizal fungus. Metabolomics analysis revealed eight flavonoids unique to the compartment containing extraradical hyphae of the arbuscular mycorrhizal fungus linked to M. truncatula roots, associated with S. meliloti growth and nod gene expression. Rhizobia plated on the extraradical hyphae connecting two plants (the legume M. truncatula and non-legume Solanum tuberosum) by a common mycelium network, showed preference for the legume, suggesting the chemoattraction by specific signals transported by the fungus connected to the legume. Simultaneously, S. meliloti stimulated the cytoplasmic/protoplasmic flow in the hyphae, likely increasing the release of nutrients and signals. Our results highlight the importance of extraradical hyphae (i.e. the mycorrhizal pathway) of arbuscular mycorrhizal fungi for the migration of rhizobia over long distances to the roots, leading to nodulation.
丛生菌根菌丝促进豆科植物根瘤菌的传播和结瘤
在土壤生态系统中,根瘤菌占据豆科植物根的根瘤层以形成结核,这一过程是由微生物识别特定根源信号(如类黄酮)引发的。然而,土壤条件会限制细菌的活动,从而将信号感知限制在直接受根系影响的区域。豆科植物与大多数具有农业意义的植物一样,都与节肢型菌根真菌有联系,后者的菌丝在土壤中广泛发育,有可能为根瘤菌提供一个有效的传播网络。我们假设,丛枝菌根真菌的菌丝网络在信号传输中起着高速公路的作用,能使根瘤菌从遥远的土壤迁移到豆科植物的根部。我们利用离体和温室微生态系统证明,不规则根瘤菌(Rhizophagus irregularis)能帮助瓜萎镰刀菌(Shinorhizobium meliloti)向豆科植物美智子(Medicago truncatula)迁移,引发结瘤。代谢组学分析表明,在含有与M. truncatula根系相连的丛枝菌根外菌丝的区系中,有八种黄酮类化合物是独有的,与S. meliloti的生长和结节基因的表达有关。根瘤菌接种在通过共同菌丝网络连接两种植物(豆科植物 M. truncatula 和非豆科植物 Solanum tuberosum)的根外菌丝上,表现出对豆科植物的偏好,这表明与豆科植物相连的真菌通过特定信号传递趋化吸引作用。同时,S. meliloti刺激菌丝中的细胞质/原生质流动,可能会增加营养物质和信号的释放。我们的研究结果凸显了丛枝菌根真菌的根外菌丝(即菌根途径)对于根瘤菌长距离迁移到根部并导致结瘤的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信