Efficient Delivery of siRNA via Tetrahedral Framework Nucleic Acids: Inflammation Attenuation and Matrix Regeneration in Temporomandibular Joint Osteoarthritis
IF 8.3 2区 材料科学Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Efficient Delivery of siRNA via Tetrahedral Framework Nucleic Acids: Inflammation Attenuation and Matrix Regeneration in Temporomandibular Joint Osteoarthritis","authors":"Shengnan Liao, Zhiqiang Liu, Weitong Lv, Songhang Li, Taoran Tian, Yifan Wang, Haoyan Wu, Zhi-He Zhao, Yunfeng Lin","doi":"10.1021/acsami.4c11089","DOIUrl":null,"url":null,"abstract":"Temporomandibular joint osteoarthritis (TMJOA) is the most common and severe subtype of temporomandibular disease characterized by inflammation and cartilage matrix degradation. Compared with traditional conservative treatment, small interfering RNAs (siRNAs) have emerged as a more efficient gene-targeted therapeutic tool for TMJOA treatment. Nuclear factor kappaB (NF-κB) is a transcription factor orchestrating the inflammatory processes in the pathogenesis of TMJOA. Employing siRNA-NF-κB could theoretically control the development of TMJOA. However, the clinical applications of siRNA-NF-κB are limited by its structural instability, poor cellular uptake, and short TMJ retention. To overcome these shortcomings, we developed a tetrahedral framework nucleic acid (tFNA) system carrying siRNA-NF-κB, named Tsi. The results indicated that Tsi exhibited excellent structural stability and excellent cellular uptake efficiency. It also demonstrated a superior NF-κB silencing effect over siRNA alone, attenuating the activation of NF-κB and upregulating the NRF2/HO-1 pathway. This system effectively reduced the release of inflammatory factors and reactive oxygen species (ROS), inhibiting cellular oxidative stress and apoptosis. <i>In vivo</i>, Tsi displayed enhanced TMJ retention capacity in comparison to siRNA alone and offered significant protective effects on both the cartilage matrix and subchondral bone, presenting a promising approach for TMJOA treatment.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c11089","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is the most common and severe subtype of temporomandibular disease characterized by inflammation and cartilage matrix degradation. Compared with traditional conservative treatment, small interfering RNAs (siRNAs) have emerged as a more efficient gene-targeted therapeutic tool for TMJOA treatment. Nuclear factor kappaB (NF-κB) is a transcription factor orchestrating the inflammatory processes in the pathogenesis of TMJOA. Employing siRNA-NF-κB could theoretically control the development of TMJOA. However, the clinical applications of siRNA-NF-κB are limited by its structural instability, poor cellular uptake, and short TMJ retention. To overcome these shortcomings, we developed a tetrahedral framework nucleic acid (tFNA) system carrying siRNA-NF-κB, named Tsi. The results indicated that Tsi exhibited excellent structural stability and excellent cellular uptake efficiency. It also demonstrated a superior NF-κB silencing effect over siRNA alone, attenuating the activation of NF-κB and upregulating the NRF2/HO-1 pathway. This system effectively reduced the release of inflammatory factors and reactive oxygen species (ROS), inhibiting cellular oxidative stress and apoptosis. In vivo, Tsi displayed enhanced TMJ retention capacity in comparison to siRNA alone and offered significant protective effects on both the cartilage matrix and subchondral bone, presenting a promising approach for TMJOA treatment.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.