Elena Avila, Hayden Salway, Edoardo Ruggeri, Ceren Çamur, Nakul Rampal, Tiarnan A.S. Doherty, Oliver D.I. Moseley, Samuel D. Stranks, David Fairen-Jimenez, Miguel Anaya
{"title":"Better together: Monolithic halide perovskite@metal-organic framework composites","authors":"Elena Avila, Hayden Salway, Edoardo Ruggeri, Ceren Çamur, Nakul Rampal, Tiarnan A.S. Doherty, Oliver D.I. Moseley, Samuel D. Stranks, David Fairen-Jimenez, Miguel Anaya","doi":"10.1016/j.matt.2024.08.022","DOIUrl":null,"url":null,"abstract":"The instability and limited scalability of halide perovskites hinder their long-term viability in applications as X-ray detectors. Here, we introduce a sol-gel ship-in-bottle approach to produce a monolithic perovskite@metal-organic framework (MOF) composite, combining the properties of the individual building blocks and enhancing density, robustness, and stability. By tuning seed particles below 100 nm, we achieve highly crystalline, dense composites with up to 40% perovskite loading. Structural and optical characterization unveils perovskite nanocrystals forming within MOF mesopores, maximizing stability and preventing degradation, maintaining over 90% photoluminescence and structural integrity after weeks of exposure to humidity, heat, and solvents. Proposed as an innovative class of scintillator, these monolithic perovskite@MOFs attenuate X-rays efficiently and exhibit outstanding stability under high radiation doses equivalent to 110,000 typical chest X-rays, with a radioluminescence lifetime of 10 ns, outperforming commercial scintillators. This approach offers vast potential for developing high-performance, cost-effective, and stable devices for radiation detection and other optoelectronic applications.","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2024.08.022","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The instability and limited scalability of halide perovskites hinder their long-term viability in applications as X-ray detectors. Here, we introduce a sol-gel ship-in-bottle approach to produce a monolithic perovskite@metal-organic framework (MOF) composite, combining the properties of the individual building blocks and enhancing density, robustness, and stability. By tuning seed particles below 100 nm, we achieve highly crystalline, dense composites with up to 40% perovskite loading. Structural and optical characterization unveils perovskite nanocrystals forming within MOF mesopores, maximizing stability and preventing degradation, maintaining over 90% photoluminescence and structural integrity after weeks of exposure to humidity, heat, and solvents. Proposed as an innovative class of scintillator, these monolithic perovskite@MOFs attenuate X-rays efficiently and exhibit outstanding stability under high radiation doses equivalent to 110,000 typical chest X-rays, with a radioluminescence lifetime of 10 ns, outperforming commercial scintillators. This approach offers vast potential for developing high-performance, cost-effective, and stable devices for radiation detection and other optoelectronic applications.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.