Enhancing spin pumping by nonlocal manipulation of magnon temperature

IF 17.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Matter Pub Date : 2024-09-26 DOI:10.1016/j.matt.2024.08.023
Sang J. Park, Phuoc Cao Van, Min-Gu Kang, Hyeon-Jung Jung, Gi-Yeop Kim, Si-Young Choi, Jung-Woo Yoo, Byong-Guk Park, Se Kwon Kim, Jong-Ryul Jeong, Hyungyu Jin
{"title":"Enhancing spin pumping by nonlocal manipulation of magnon temperature","authors":"Sang J. Park, Phuoc Cao Van, Min-Gu Kang, Hyeon-Jung Jung, Gi-Yeop Kim, Si-Young Choi, Jung-Woo Yoo, Byong-Guk Park, Se Kwon Kim, Jong-Ryul Jeong, Hyungyu Jin","doi":"10.1016/j.matt.2024.08.023","DOIUrl":null,"url":null,"abstract":"To realize magnonic devices, finding a way to make magnons better transport and efficiently pump their spin angular momentum across a ferromagnetic insulator (FMI)/normal metal (NM) interface is crucial. Here, we demonstrate that modulating magnon temperature in an FMI offers an effective way to manipulate magnon transport and can lead to significantly enhanced spin pumping when the process is driven by a temperature gradient. This modulation is achieved by engineering the interface between the substrate and the FMI in a substrate/FMI/NM heterostructure, such that the interface provides stronger energy exchange between phonons in the substrate and magnons in the FMI. We report a 265% enhanced spin Seebeck effect, which represents the thermally driven spin-pumping process, and a 122% enhanced magnon current density participating in the spin pumping. Theoretical and experimental evidence coherently indicate that the observed enhancement should be attributed to the modified magnon temperature profile in the FMI.","PeriodicalId":388,"journal":{"name":"Matter","volume":null,"pages":null},"PeriodicalIF":17.3000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2024.08.023","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To realize magnonic devices, finding a way to make magnons better transport and efficiently pump their spin angular momentum across a ferromagnetic insulator (FMI)/normal metal (NM) interface is crucial. Here, we demonstrate that modulating magnon temperature in an FMI offers an effective way to manipulate magnon transport and can lead to significantly enhanced spin pumping when the process is driven by a temperature gradient. This modulation is achieved by engineering the interface between the substrate and the FMI in a substrate/FMI/NM heterostructure, such that the interface provides stronger energy exchange between phonons in the substrate and magnons in the FMI. We report a 265% enhanced spin Seebeck effect, which represents the thermally driven spin-pumping process, and a 122% enhanced magnon current density participating in the spin pumping. Theoretical and experimental evidence coherently indicate that the observed enhancement should be attributed to the modified magnon temperature profile in the FMI.

Abstract Image

通过对磁子温度的非局部操纵增强自旋泵浦功能
要实现磁子器件,找到一种方法让磁子在铁磁绝缘体(FMI)/普通金属(NM)界面上更好地传输和高效地泵送其自旋角动量至关重要。在这里,我们证明了在铁磁绝缘体中调制磁子温度是操纵磁子传输的有效方法,并能在温度梯度的驱动下显著增强自旋泵。这种调制是通过在基底/FMI/NM 异质结构中对基底和 FMI 之间的界面进行工程设计来实现的,从而使界面在基底中的声子和 FMI 中的磁子之间提供更强的能量交换。我们报告了增强了 265% 的自旋塞贝克效应(代表热驱动的自旋泵过程)和增强了 122% 的参与自旋泵的磁子电流密度。理论和实验证据一致表明,观察到的增强应归因于 FMI 中修改过的磁子温度曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信