Ying Zhao, Jian Song, Qingchun Yang, Yuelei Li, Zhuqing Liu and Fan Yang
{"title":"Real-time visualization of carbon quantum dot transport in homogeneous and heterogeneous porous media†","authors":"Ying Zhao, Jian Song, Qingchun Yang, Yuelei Li, Zhuqing Liu and Fan Yang","doi":"10.1039/D4EN00563E","DOIUrl":null,"url":null,"abstract":"<p >The widespread applications of carbon quantum dots (CQDs) have attracted much attention. This study presents a novel research system to study the transport and retention of CQDs in homogeneous and heterogeneous porous media. The light transmission visualization technique was used to visualize the real-time distribution and transport of CQDs. Results showed that the increase in quartz sand particle size and increased pH significantly enhanced the transport of CQDs. Due to the negative surface charge of CQDs shielded by high IS, the agglomeration of CQDs enhanced the clogging of CQDs. Particularly, significant aggregated fluorescence quenching of CQDs occurred at IS = 100 mM and IS = 200 mM. In heterogeneous media, the layer structure alteration and preferential flow contribute significantly in the transport of CQDs. Compared to the fine sand layer, most of the CQDs outflow from the coarse sand layer. The breakthrough curves for CQD transport in porous media can be matched by a simplified double-Monod model with high accuracy (<em>R</em><small><sup>2</sup></small> > 0.92). Moreover, the DLVO theory and clogging mechanism well explain the environmental behavior of CQDs in 2D porous media. This study visualized the fate of CQDs in 2D porous media, enabling us to further assess and predict their environmental risks.</p>","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":" 12","pages":" 4743-4753"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/en/d4en00563e","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The widespread applications of carbon quantum dots (CQDs) have attracted much attention. This study presents a novel research system to study the transport and retention of CQDs in homogeneous and heterogeneous porous media. The light transmission visualization technique was used to visualize the real-time distribution and transport of CQDs. Results showed that the increase in quartz sand particle size and increased pH significantly enhanced the transport of CQDs. Due to the negative surface charge of CQDs shielded by high IS, the agglomeration of CQDs enhanced the clogging of CQDs. Particularly, significant aggregated fluorescence quenching of CQDs occurred at IS = 100 mM and IS = 200 mM. In heterogeneous media, the layer structure alteration and preferential flow contribute significantly in the transport of CQDs. Compared to the fine sand layer, most of the CQDs outflow from the coarse sand layer. The breakthrough curves for CQD transport in porous media can be matched by a simplified double-Monod model with high accuracy (R2 > 0.92). Moreover, the DLVO theory and clogging mechanism well explain the environmental behavior of CQDs in 2D porous media. This study visualized the fate of CQDs in 2D porous media, enabling us to further assess and predict their environmental risks.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis