Biocatalytic asymmetric aldol addition into unactivated ketones

IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Samantha K. Bruffy, Anthony Meza, Jordi Soler, Tyler J. Doyon, Seth H. Young, Jooyeon Lim, Kathryn G. Huseth, Patrick H. Willoughby, Marc Garcia-Borràs, Andrew R. Buller
{"title":"Biocatalytic asymmetric aldol addition into unactivated ketones","authors":"Samantha K. Bruffy, Anthony Meza, Jordi Soler, Tyler J. Doyon, Seth H. Young, Jooyeon Lim, Kathryn G. Huseth, Patrick H. Willoughby, Marc Garcia-Borràs, Andrew R. Buller","doi":"10.1038/s41557-024-01647-1","DOIUrl":null,"url":null,"abstract":"<p>Enzymes are renowned for their catalytic efficiency and selectivity, but many classical transformations in organic synthesis have no biocatalytic counterpart. Aldolases are prodigious C–C bond-forming enzymes, but their reactivity has only been extended past activated carbonyl electrophiles in special cases. To probe the mechanistic origins of this limitation, we use a pair of aldolases whose activity is dependent on pyridoxal phosphate. Our results reveal how aldolases are limited by kinetically favourable proton transfer with solvent, which undermines aldol addition into ketones. We show how a transaldolase can circumvent this limitation, enabling efficient addition into unactivated ketones. The resulting products are highly sought non-canonical amino acids with side chains that contain chiral tertiary alcohols. Mechanistic analysis reveals that transaldolase activity is an intrinsic feature of pyridoxal phosphate chemistry and identifies principles for extending aldolase catalysis beyond its previous limits to enable convergent, enantioselective C–C bond formation from simple starting materials.</p><figure></figure>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s41557-024-01647-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Enzymes are renowned for their catalytic efficiency and selectivity, but many classical transformations in organic synthesis have no biocatalytic counterpart. Aldolases are prodigious C–C bond-forming enzymes, but their reactivity has only been extended past activated carbonyl electrophiles in special cases. To probe the mechanistic origins of this limitation, we use a pair of aldolases whose activity is dependent on pyridoxal phosphate. Our results reveal how aldolases are limited by kinetically favourable proton transfer with solvent, which undermines aldol addition into ketones. We show how a transaldolase can circumvent this limitation, enabling efficient addition into unactivated ketones. The resulting products are highly sought non-canonical amino acids with side chains that contain chiral tertiary alcohols. Mechanistic analysis reveals that transaldolase activity is an intrinsic feature of pyridoxal phosphate chemistry and identifies principles for extending aldolase catalysis beyond its previous limits to enable convergent, enantioselective C–C bond formation from simple starting materials.

Abstract Image

生物催化不对称醛醇加成到未活化酮中
酶以其催化效率和选择性而闻名,但有机合成中的许多经典转化却没有相应的生物催化剂。醛醇酶是一种神奇的 C-C 键形成酶,但只有在特殊情况下,它们的反应活性才会超过活化的羰基亲电物。为了探究这种限制的机理根源,我们使用了一对活性依赖于磷酸吡哆醛的醛缩酶。我们的研究结果揭示了醛缩酶是如何受限于与溶剂之间在动力学上有利的质子转移,从而破坏了酮的醛加成作用。我们展示了一种反醛醇酶如何绕过这一限制,实现与未活化酮的高效加成。由此产生的产物是非常受欢迎的非典型氨基酸,其侧链含有手性叔醇。机理分析表明,反醛酶活性是磷酸吡哆醛化学的一个固有特征,并确定了扩展醛酶催化作用的原理,使其超越以往的限制,从而能够从简单的起始材料中形成会聚的、对映选择性的 C-C 键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信