Rationally reconstructing the surface microstructure of chemical bath deposited electron transport layer for efficient and stable perovskite solar cells

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Xianxuan Yang, Lexin Wang, Meihan Liu, Jiahui Jin, Lili Yang, Lin Fan, Maobin Wei, Huilian Liu, Haoran Chen, Jinghai Yang, Yulei Chang, Fengyou Wang
{"title":"Rationally reconstructing the surface microstructure of chemical bath deposited electron transport layer for efficient and stable perovskite solar cells","authors":"Xianxuan Yang, Lexin Wang, Meihan Liu, Jiahui Jin, Lili Yang, Lin Fan, Maobin Wei, Huilian Liu, Haoran Chen, Jinghai Yang, Yulei Chang, Fengyou Wang","doi":"10.1039/d4qi01808g","DOIUrl":null,"url":null,"abstract":"In perovskite solar cells (PSCs), chemical bath deposition (CBD) is promising to be the core technique for preparing commercial electron transport layer (ETL) because the film prepared by CBD exhibits excellent uniform and conformal coverage of the substrate. However, metal oxide (MOx) films prepared through CBD often have defects on the surface like oxygen vacancies and hydroxyl that limit the PSCs efficiency and degrade the long-term stability. To address this obstacle to the scaled PSCs application, we here reconstructed the surface microstructure of CBD tin dioxide (SnO2) ETL by post-treatment with dilute H2SO4 solution to terminate the oxygen vacancies from the MOx surface while effectively removing the hydroxyl groups. Concurrently, the potent oxidizing property of H2SO4 facilitates the transformation from Sn (II) to Sn (IV), thereby enhancing the alignment of energy level between SnO2 and perovskite (PVK) layer within the ETL architecture. Moreover, the interaction between SO42- and perovskite precursor mitigates the difference in crystallization velocity between the perovskite upper and buried surfaces, enabling films with homogeneous phase distribution and good crystallization. Ultimately, with the assistance of this facile surface microstructure reconstruction, the power conversion efficiency (PCE) is improved from 22.48% to 24.29%.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi01808g","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

In perovskite solar cells (PSCs), chemical bath deposition (CBD) is promising to be the core technique for preparing commercial electron transport layer (ETL) because the film prepared by CBD exhibits excellent uniform and conformal coverage of the substrate. However, metal oxide (MOx) films prepared through CBD often have defects on the surface like oxygen vacancies and hydroxyl that limit the PSCs efficiency and degrade the long-term stability. To address this obstacle to the scaled PSCs application, we here reconstructed the surface microstructure of CBD tin dioxide (SnO2) ETL by post-treatment with dilute H2SO4 solution to terminate the oxygen vacancies from the MOx surface while effectively removing the hydroxyl groups. Concurrently, the potent oxidizing property of H2SO4 facilitates the transformation from Sn (II) to Sn (IV), thereby enhancing the alignment of energy level between SnO2 and perovskite (PVK) layer within the ETL architecture. Moreover, the interaction between SO42- and perovskite precursor mitigates the difference in crystallization velocity between the perovskite upper and buried surfaces, enabling films with homogeneous phase distribution and good crystallization. Ultimately, with the assistance of this facile surface microstructure reconstruction, the power conversion efficiency (PCE) is improved from 22.48% to 24.29%.
合理重构化学沉积电子传输层的表面微结构,实现高效稳定的过氧化物太阳能电池
在过氧化物太阳能电池(PSCs)中,化学沉积法(CBD)有望成为制备商用电子传输层(ETL)的核心技术,因为通过 CBD 制备的薄膜能够很好地均匀、保形地覆盖基底。然而,通过化学气相沉积制备的金属氧化物(MOx)薄膜表面往往存在氧空位和羟基等缺陷,从而限制了 PSC 的效率并降低了其长期稳定性。为了解决这一影响 PSCs 大规模应用的障碍,我们用稀 H2SO4 溶液对 CBD 二氧化锡(SnO2)ETL 进行后处理,以终止 MOx 表面的氧空位,同时有效去除羟基,从而重建了其表面微观结构。同时,H2SO4 的强氧化特性促进了 Sn (II) 向 Sn (IV) 的转化,从而增强了 ETL 结构中 SnO2 和过氧化物层 (PVK) 之间的能级排列。此外,SO42- 和包晶体前驱体之间的相互作用还能缓解包晶体上表面和埋藏表面之间的结晶速度差异,从而使薄膜具有均匀的相分布和良好的结晶性。最终,在这种简便的表面微结构重建技术的帮助下,功率转换效率(PCE)从 22.48% 提高到了 24.29%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信