Direct Recycling at the Material Level: Unravelling Challenges and Opportunities through a Case Study on Spent Ni-Rich Layered Oxide-Based Cathodes (Adv. Energy Mater. 36/2024)
Maike Michelle Gnutzmann, Ardavan Makvandi, Bixian Ying, Julius Buchmann, Marco Joes Lüther, Bianca Helm, Peter Nagel, Martin Peterlechner, Gerhard Wilde, Aurora Gomez-Martin, Karin Kleiner, Martin Winter, Johannes Kasnatscheew
{"title":"Direct Recycling at the Material Level: Unravelling Challenges and Opportunities through a Case Study on Spent Ni-Rich Layered Oxide-Based Cathodes (Adv. Energy Mater. 36/2024)","authors":"Maike Michelle Gnutzmann, Ardavan Makvandi, Bixian Ying, Julius Buchmann, Marco Joes Lüther, Bianca Helm, Peter Nagel, Martin Peterlechner, Gerhard Wilde, Aurora Gomez-Martin, Karin Kleiner, Martin Winter, Johannes Kasnatscheew","doi":"10.1002/aenm.202470150","DOIUrl":null,"url":null,"abstract":"<p><b>Layered Oxide-Based Cathodes</b></p><p>In article number 2400840, Johannes Kasnatscheew and co-workers illustrate direct recycling of LiNi<sub>x</sub>Co<sub>y</sub>MnzO<sub>2</sub> (NCM)-based cathode active materials, a beneficial closed-loop approach, that theoretically can simply proceed via relithiation at higher temperatures, i.e., by mimicking NCM synthesis conditions. Though, many aspects can be successfully recovered (e.g., crystallinity), but some aspects remain challenging and require further R&D (e.g., morphology).\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aenm.202470150","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202470150","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Layered Oxide-Based Cathodes
In article number 2400840, Johannes Kasnatscheew and co-workers illustrate direct recycling of LiNixCoyMnzO2 (NCM)-based cathode active materials, a beneficial closed-loop approach, that theoretically can simply proceed via relithiation at higher temperatures, i.e., by mimicking NCM synthesis conditions. Though, many aspects can be successfully recovered (e.g., crystallinity), but some aspects remain challenging and require further R&D (e.g., morphology).
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.