A Deep Learning Approach for Automatic Ionogram Parameters Recognition With Convolutional Neural Networks

IF 2.9 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS
Ruslan Sherstyukov, Samson Moges, Alexander Kozlovsky, Thomas Ulich
{"title":"A Deep Learning Approach for Automatic Ionogram Parameters Recognition With Convolutional Neural Networks","authors":"Ruslan Sherstyukov,&nbsp;Samson Moges,&nbsp;Alexander Kozlovsky,&nbsp;Thomas Ulich","doi":"10.1029/2023EA003446","DOIUrl":null,"url":null,"abstract":"<p>Typical ionosondes operate with &gt;5 min time intervals, which is enough to obtain regular parameters of the ionosphere, but insufficient to observe short-term processes in the Earth's ionosphere. The key point for this study is to increase the ionosondes data time resolution by automatization of ionogram scaling routine. In this study we show the results of implementation of deep learning approach for ionogram parameters scaling. We trained the model on 13 years ionogram data set of Sodankyla ionosonde at high latitude region (67°N). We tested our autoscaling program tool on 2021 years data set and evaluate errors between operator and automatic parameters scaling. The root mean square errors for critical frequencies <i>foF2</i>, <i>foF1</i>, <i>foE</i>, <i>foEs, fmin, fbEs</i> and virtual heights <i>h′F, h′E, h′Es</i> are estimated as 0.12 MHz (2 pixels), 0.07 MHz (1.16 pixels), 0.15 MHz (2.5 pixels), 0.33 MHz (5.5 pixels), 0.15 MHz (2.5 pixels), 0.17 MHz (2.83 pixels), 7.7 km (1.34 pixels), 7.0 km (1.22 pixels), 7.1 km (1.24 pixels), respectively.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"11 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023EA003446","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023EA003446","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Typical ionosondes operate with >5 min time intervals, which is enough to obtain regular parameters of the ionosphere, but insufficient to observe short-term processes in the Earth's ionosphere. The key point for this study is to increase the ionosondes data time resolution by automatization of ionogram scaling routine. In this study we show the results of implementation of deep learning approach for ionogram parameters scaling. We trained the model on 13 years ionogram data set of Sodankyla ionosonde at high latitude region (67°N). We tested our autoscaling program tool on 2021 years data set and evaluate errors between operator and automatic parameters scaling. The root mean square errors for critical frequencies foF2, foF1, foE, foEs, fmin, fbEs and virtual heights h′F, h′E, h′Es are estimated as 0.12 MHz (2 pixels), 0.07 MHz (1.16 pixels), 0.15 MHz (2.5 pixels), 0.33 MHz (5.5 pixels), 0.15 MHz (2.5 pixels), 0.17 MHz (2.83 pixels), 7.7 km (1.34 pixels), 7.0 km (1.22 pixels), 7.1 km (1.24 pixels), respectively.

Abstract Image

利用卷积神经网络自动识别电离层参数的深度学习方法
典型电离层探测仪的运行时间间隔为 5 分钟,这足以获得电离层的常规参数,但不足以观测地球电离层的短期过程。这项研究的关键是通过自动电离图缩放程序来提高电离层探测仪数据的时间分辨率。在本研究中,我们展示了电离图参数缩放深度学习方法的实施结果。我们在高纬度地区(北纬 67 度)索丹基拉电离层探测仪 13 年的电离图数据集上训练了模型。我们在 2021 年的数据集上测试了我们的自动缩放程序工具,并评估了操作员和自动参数缩放之间的误差。临界频率 foF2、foF1、foE、foEs、fmin、fbEs 和虚拟高度 h′F、h′E、h′Es 的均方根误差分别为 0.12 MHz(2 像素)、0.07 MHz(1.16 像素)、0.15 MHz(2.5 像素)、0.33 MHz(5.5 像素)、0.15 MHz(2.5 像素)、0.17 MHz(2.83 像素)、7.7 km(1.34 像素)、7.0 km(1.22 像素)、7.1 km(1.24 像素)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth and Space Science
Earth and Space Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
5.50
自引率
3.20%
发文量
285
审稿时长
19 weeks
期刊介绍: Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信