Martin Hřivňacký , Marek Rác , Ondřej Vrobel , Petr Tarkowski , Andrej Pavlovič
{"title":"Diethyl ether anaesthesia does not block local touch response in Arabidopsis thaliana","authors":"Martin Hřivňacký , Marek Rác , Ondřej Vrobel , Petr Tarkowski , Andrej Pavlovič","doi":"10.1016/j.jplph.2024.154358","DOIUrl":null,"url":null,"abstract":"<div><div>Plants can sense and respond to non-damaging mechanical stimulation such as touch, rain, or wind. Mechanical stimulation induces an increase of cytosolic calcium ([Ca<sup>2+</sup>]<sub>cyt</sub>), accumulation of phytohormones from the group of jasmonates (JAs) and activation of gene expression, which can be JAs-dependent or JAs-independent. Response to touch shares similar properties with reactions to stresses such as wounding or pathogen attack, and regular mechanical stimulation leads to changes in growth and development called thigmomorphogenesis. Previous studies showed that well-known seismonastic plants such as Venus flytrap (<em>Dionaea muscipula</em>) or sensitive plant (<em>Mimosa pudica</em>) lost their touch-induced motive responses during exposure to general volatile anaesthetic (GVA) diethyl ether. Here, we investigated the effect of diethyl ether anaesthesia on touch response in <em>Arabidopsis thaliana</em>. We monitored [Ca<sup>2+</sup>]<sub>cyt</sub> level, accumulation of JAs and expression of touch-responsive genes. Our results showed that none of the investigated responses was affected by diethyl ether. However, diethyl ether alone increased [Ca<sup>2+</sup>]<sub>cyt</sub> and modulated JAs-independent touch-responsive genes, thus partially activating touch response non-specifically. Together with our previous studies, we concluded that GVA diethyl ether cannot block the local rise of [Ca<sup>2+</sup>]<sub>cyt</sub> but only its systemic propagation dependent on GLUTAMATE LIKE RECEPTOR 3s (GLR3s) channels.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":"303 ","pages":"Article 154358"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161724001895","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plants can sense and respond to non-damaging mechanical stimulation such as touch, rain, or wind. Mechanical stimulation induces an increase of cytosolic calcium ([Ca2+]cyt), accumulation of phytohormones from the group of jasmonates (JAs) and activation of gene expression, which can be JAs-dependent or JAs-independent. Response to touch shares similar properties with reactions to stresses such as wounding or pathogen attack, and regular mechanical stimulation leads to changes in growth and development called thigmomorphogenesis. Previous studies showed that well-known seismonastic plants such as Venus flytrap (Dionaea muscipula) or sensitive plant (Mimosa pudica) lost their touch-induced motive responses during exposure to general volatile anaesthetic (GVA) diethyl ether. Here, we investigated the effect of diethyl ether anaesthesia on touch response in Arabidopsis thaliana. We monitored [Ca2+]cyt level, accumulation of JAs and expression of touch-responsive genes. Our results showed that none of the investigated responses was affected by diethyl ether. However, diethyl ether alone increased [Ca2+]cyt and modulated JAs-independent touch-responsive genes, thus partially activating touch response non-specifically. Together with our previous studies, we concluded that GVA diethyl ether cannot block the local rise of [Ca2+]cyt but only its systemic propagation dependent on GLUTAMATE LIKE RECEPTOR 3s (GLR3s) channels.
期刊介绍:
The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication.
The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.