Concentration and crystallization of Microbial Xylitol from oil palm empty fruit bunch (OPEFB) using submerged direct contact membrane distillation (DCMD)
Helen Julian , Wildan Qoharisma Salam , Made Tri Ari Penia Kresnowati
{"title":"Concentration and crystallization of Microbial Xylitol from oil palm empty fruit bunch (OPEFB) using submerged direct contact membrane distillation (DCMD)","authors":"Helen Julian , Wildan Qoharisma Salam , Made Tri Ari Penia Kresnowati","doi":"10.1016/j.jfoodeng.2024.112332","DOIUrl":null,"url":null,"abstract":"<div><div>Xylitol possess high solubility in water and increase viscosity at high temperature, making the concentration process become challenging. This study demonstrated the applicability of Membrane Distillation (MD) in concentrating xylitol solutions and evaluates its performance at different conditions and feed compositions. MD was capable of concentrating pure xylitol solution to reach the supersaturated condition. However, when Oil Palm Empty Fruit Bunch (OPEFB) hydrolysate fermentation broth was used, fouling was observed due to the presence of impurities, despite the application of feed agitation. The batch crystallization of xylitol were conducted at 5 °C with a seed addition of 0.5–0.8%-wt. Higher seed concentrations were required to induce crystallization in OPEFB hydrolysate due to lower xylitol concentrations and impurity presence. Furthermore, impurities influenced the quality of the crystals, resulting in crystal purities of 98.98% and 94.56% in the synthetic solution and OPEFB hydrolysate, respectively. These findings indicated notable impact of crystallization temperature, seed addition, and impurity on xylitol crystallization.</div></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"387 ","pages":"Article 112332"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877424003984","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Xylitol possess high solubility in water and increase viscosity at high temperature, making the concentration process become challenging. This study demonstrated the applicability of Membrane Distillation (MD) in concentrating xylitol solutions and evaluates its performance at different conditions and feed compositions. MD was capable of concentrating pure xylitol solution to reach the supersaturated condition. However, when Oil Palm Empty Fruit Bunch (OPEFB) hydrolysate fermentation broth was used, fouling was observed due to the presence of impurities, despite the application of feed agitation. The batch crystallization of xylitol were conducted at 5 °C with a seed addition of 0.5–0.8%-wt. Higher seed concentrations were required to induce crystallization in OPEFB hydrolysate due to lower xylitol concentrations and impurity presence. Furthermore, impurities influenced the quality of the crystals, resulting in crystal purities of 98.98% and 94.56% in the synthetic solution and OPEFB hydrolysate, respectively. These findings indicated notable impact of crystallization temperature, seed addition, and impurity on xylitol crystallization.
期刊介绍:
The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including:
Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes.
Accounts of food engineering achievements are of particular value.