Enhancing crop yield and microbial diversity in saline-affected paddy soil through biochar amendment under aquaculture wastewater irrigation

IF 3.7 2区 农林科学 Q1 ECOLOGY
Xuli Zhao , Hans-Peter Grossart
{"title":"Enhancing crop yield and microbial diversity in saline-affected paddy soil through biochar amendment under aquaculture wastewater irrigation","authors":"Xuli Zhao ,&nbsp;Hans-Peter Grossart","doi":"10.1016/j.ejsobi.2024.103681","DOIUrl":null,"url":null,"abstract":"<div><div>Biochar is frequently employed to ameliorate saline-affected paddy soil. However, there are controversial research findings regarding the applicability of biochar for the enhancement of soil physicochemical properties and agricultural (crop) yield, particularly under conditions of wastewater irrigation in agricultural production. This study investigates the effects of controlled soil salinity levels (1 ‰ and 3 ‰), induced using sodium chloride, and the targeted application of biochar in a pot experiment. The study examines the impact on physicochemical characteristics of different soil layers, physicochemical properties, and physiological responses of rice plants irrigated with aquaculture wastewater. It also delves into soil microbial diversity and the predominant bacterial species. The research findings reveal that biochar exerts a significant influence on soil properties and nitrogen content in saline environments. The addition of biochar enhanced soil electrical conductivity (EC), modulated the distribution of organic carbon, and altered nitrogen transformation processes within the soil. Consequently, biochar application resulted in a 14.2 % and 6.81 % increase in rice yield at 1 ‰ and 3 ‰ salinity levels, respectively. Furthermore, biochar increased leaf area by 25.3 % and 45.9 % in 1 ‰ and 3 ‰ salinity stress separately and enhanced the nitrogen content (TN) in leaves by 28.6 % when the soil salinity is 1 g/kg, demonstrating a positive impact on nitrogen uptake. Additionally, biochar has shown potential in mitigating nitrous oxide (N<sub>2</sub>O) emissions. Its addition led to a reduction in the relative abundance of <em>Actinobacteria</em> while increasing the relative abundance of <em>Firmicutes</em>. These findings provide novel insights into the transformative potential of biochar in improving the characteristics of saline paddy soil and augmenting rice yield when used in conjunction with aquaculture wastewater irrigation.</div></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"123 ","pages":"Article 103681"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1164556324000876","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Biochar is frequently employed to ameliorate saline-affected paddy soil. However, there are controversial research findings regarding the applicability of biochar for the enhancement of soil physicochemical properties and agricultural (crop) yield, particularly under conditions of wastewater irrigation in agricultural production. This study investigates the effects of controlled soil salinity levels (1 ‰ and 3 ‰), induced using sodium chloride, and the targeted application of biochar in a pot experiment. The study examines the impact on physicochemical characteristics of different soil layers, physicochemical properties, and physiological responses of rice plants irrigated with aquaculture wastewater. It also delves into soil microbial diversity and the predominant bacterial species. The research findings reveal that biochar exerts a significant influence on soil properties and nitrogen content in saline environments. The addition of biochar enhanced soil electrical conductivity (EC), modulated the distribution of organic carbon, and altered nitrogen transformation processes within the soil. Consequently, biochar application resulted in a 14.2 % and 6.81 % increase in rice yield at 1 ‰ and 3 ‰ salinity levels, respectively. Furthermore, biochar increased leaf area by 25.3 % and 45.9 % in 1 ‰ and 3 ‰ salinity stress separately and enhanced the nitrogen content (TN) in leaves by 28.6 % when the soil salinity is 1 g/kg, demonstrating a positive impact on nitrogen uptake. Additionally, biochar has shown potential in mitigating nitrous oxide (N2O) emissions. Its addition led to a reduction in the relative abundance of Actinobacteria while increasing the relative abundance of Firmicutes. These findings provide novel insights into the transformative potential of biochar in improving the characteristics of saline paddy soil and augmenting rice yield when used in conjunction with aquaculture wastewater irrigation.
在水产养殖废水灌溉条件下,通过生物炭改良提高受盐碱影响的稻田土壤中的作物产量和微生物多样性
生物炭经常被用来改善受盐碱影响的稻田土壤。然而,关于生物炭在提高土壤理化性质和农业(作物)产量方面的适用性,特别是在农业生产中的废水灌溉条件下的适用性,研究结果还存在争议。本研究在盆栽实验中调查了使用氯化钠诱导的可控土壤盐度水平(1 ‰ 和 3 ‰)和定向施用生物炭的影响。该研究探讨了水产养殖废水灌溉对不同土壤层的物理化学特征、理化性质和水稻植株生理反应的影响。研究还深入探讨了土壤微生物多样性和主要细菌种类。研究结果表明,生物炭对盐碱环境中的土壤性质和氮含量有显著影响。生物炭的添加增强了土壤导电性(EC),调节了有机碳的分布,并改变了土壤中的氮转化过程。因此,在盐度为 1 ‰ 和 3 ‰ 的情况下,施用生物炭可使水稻产量分别增加 14.2% 和 6.81%。此外,在 1 ‰ 和 3 ‰ 的盐度胁迫下,生物炭分别使叶面积增加了 25.3 % 和 45.9 %,当土壤盐度为 1 克/千克时,叶片中的氮含量(TN)提高了 28.6 %,这表明生物炭对氮的吸收有积极影响。此外,生物炭还具有减少一氧化二氮(N2O)排放的潜力。加入生物炭后,放线菌的相对丰度降低,而真菌的相对丰度增加。这些发现提供了新的见解,说明生物炭在与水产养殖废水灌溉结合使用时,在改善盐碱水稻田土壤特性和提高水稻产量方面具有变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Soil Biology
European Journal of Soil Biology 环境科学-生态学
CiteScore
6.90
自引率
0.00%
发文量
51
审稿时长
27 days
期刊介绍: The European Journal of Soil Biology covers all aspects of soil biology which deal with microbial and faunal ecology and activity in soils, as well as natural ecosystems or biomes connected to ecological interests: biodiversity, biological conservation, adaptation, impact of global changes on soil biodiversity and ecosystem functioning and effects and fate of pollutants as influenced by soil organisms. Different levels in ecosystem structure are taken into account: individuals, populations, communities and ecosystems themselves. At each level, different disciplinary approaches are welcomed: molecular biology, genetics, ecophysiology, ecology, biogeography and landscape ecology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信