{"title":"Improved mesh-free SPH approach for loose top coal caving modeling","authors":"Xiangwei Dong , Qiang Zhang , Yang Liu , Xin Liu","doi":"10.1016/j.partic.2024.08.016","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents an innovative model in computational geotechnical engineering by improving the Smoothed Particle Hydrodynamics (SPH) method for simulating loose particle dynamics in coal caving processes. The improved model integrates an elastic-perfectly plastic constitutive model with the Drucker-Prager yield criterion and includes several improvements aimed at boosting accuracy, stability, and efficiency. These improvements include gravity loading coupled with particle damping, first-order stress field smoothing, and kernel gradient correction. A series of numerical experiments validates the effectiveness of the improved SPH model, demonstrating its capability to predict large deformations and track the evolution of the coal-rock interface in coal caving processes. Furthermore, the study analyzes the model's sensitivity to material parameters such as the angle of friction and material density, which aids in configuring the model for distinct coal mining situations. Results show that the non-cohesive elastic-perfectly plastic constitutive model can effectively simulate the flow behavior of granular particles, and the landslide simulation results are in good agreement with the experiments. The improved SPH algorithm with stress smoothing technique solves the problem of numerical noise, and the “double peak” stress distribution around the coal outlet is identified. The established SPH model offers an effective tool for understanding dynamics behaviors of loose top coal. Significantly, the model requires only five material parameters, which can be identified through standard experiments, avoiding the typically arduous process of parameter selection or calibration commonly existing in Discrete Element Method simulations.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"95 ","pages":"Pages 1-27"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124001718","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an innovative model in computational geotechnical engineering by improving the Smoothed Particle Hydrodynamics (SPH) method for simulating loose particle dynamics in coal caving processes. The improved model integrates an elastic-perfectly plastic constitutive model with the Drucker-Prager yield criterion and includes several improvements aimed at boosting accuracy, stability, and efficiency. These improvements include gravity loading coupled with particle damping, first-order stress field smoothing, and kernel gradient correction. A series of numerical experiments validates the effectiveness of the improved SPH model, demonstrating its capability to predict large deformations and track the evolution of the coal-rock interface in coal caving processes. Furthermore, the study analyzes the model's sensitivity to material parameters such as the angle of friction and material density, which aids in configuring the model for distinct coal mining situations. Results show that the non-cohesive elastic-perfectly plastic constitutive model can effectively simulate the flow behavior of granular particles, and the landslide simulation results are in good agreement with the experiments. The improved SPH algorithm with stress smoothing technique solves the problem of numerical noise, and the “double peak” stress distribution around the coal outlet is identified. The established SPH model offers an effective tool for understanding dynamics behaviors of loose top coal. Significantly, the model requires only five material parameters, which can be identified through standard experiments, avoiding the typically arduous process of parameter selection or calibration commonly existing in Discrete Element Method simulations.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.