{"title":"Optical-stimulated luminescence properties of undoped and Eu-doped LiCl transparent ceramics synthesized by spark plasma sintering method","authors":"Kensei Ichiba , Hiromi Kimura , Yuma Takebuchi , Takumi Kato , Daisuke Nakauchi , Noriaki Kawaguchi , Takayuki Yanagida","doi":"10.1016/j.apradiso.2024.111528","DOIUrl":null,"url":null,"abstract":"<div><div>The undoped and Eu-doped LiCl transparent ceramics were synthesized, and their photoluminescence (PL) and optical stimulated luminescence (OSL) properties were evaluated. The PL properties of the undoped sample revealed as emission band due to a defect center. Additionally, the Eu-doped samples exhibited an emission band due to the 5d–4f transitions of Eu<sup>2+</sup> ions. The OSL phenomenon was observed only in the Eu-doped samples and was not present in the undoped sample. The OSL spectra of the Eu-doped samples showed as emission band at 430 nm under stimulated at 490 nm, which was due to the 5d–4f transitions of Eu<sup>2+</sup> ions. Based on the dose response functions, the lower detection limits of the Eu-doped samples were indicated as 10 mGy (0.1% Eu) and 1 mGy (0.5% and 1.0% Eu), and the 0.5% Eu-doped sample exhibited the highest OSL intensity among the Eu-doped samples.</div></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":"214 ","pages":"Article 111528"},"PeriodicalIF":1.6000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Radiation and Isotopes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969804324003567","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The undoped and Eu-doped LiCl transparent ceramics were synthesized, and their photoluminescence (PL) and optical stimulated luminescence (OSL) properties were evaluated. The PL properties of the undoped sample revealed as emission band due to a defect center. Additionally, the Eu-doped samples exhibited an emission band due to the 5d–4f transitions of Eu2+ ions. The OSL phenomenon was observed only in the Eu-doped samples and was not present in the undoped sample. The OSL spectra of the Eu-doped samples showed as emission band at 430 nm under stimulated at 490 nm, which was due to the 5d–4f transitions of Eu2+ ions. Based on the dose response functions, the lower detection limits of the Eu-doped samples were indicated as 10 mGy (0.1% Eu) and 1 mGy (0.5% and 1.0% Eu), and the 0.5% Eu-doped sample exhibited the highest OSL intensity among the Eu-doped samples.
期刊介绍:
Applied Radiation and Isotopes provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and peaceful application of nuclear, radiation and radionuclide techniques in chemistry, physics, biochemistry, biology, medicine, security, engineering and in the earth, planetary and environmental sciences, all including dosimetry. Nuclear techniques are defined in the broadest sense and both experimental and theoretical papers are welcome. They include the development and use of α- and β-particles, X-rays and γ-rays, neutrons and other nuclear particles and radiations from all sources, including radionuclides, synchrotron sources, cyclotrons and reactors and from the natural environment.
The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria.
Papers dealing with radiation processing, i.e., where radiation is used to bring about a biological, chemical or physical change in a material, should be directed to our sister journal Radiation Physics and Chemistry.