{"title":"BiOCl-PVDF nanofibrous membrane for synergic oil-water separation and degradation of dye","authors":"Imdangtila Kichu, Debarun Dhar Purkayastha","doi":"10.1016/j.jece.2024.114209","DOIUrl":null,"url":null,"abstract":"<div><div>Polymeric membranes have garnered remarkable attention, attributed to the significant breakthrough in the filtration of oily wastewater. However, the major setbacks of pristine polymeric membranes include susceptibility to fouling and chemical instability. Addressing such issues, this work focusses in the modification of polymer membranes using a metal oxyhalide, such as Bismuth oxychloride (BiOCl). This modification not only enhances water purification capabilities but also strengthens the membrane, protecting it from environmental deterioration and extending its lifespan. BiOCl was integrated into an electrospun pristine nanofibrous polymeric membrane using hydrothermal technique. The synthesized membrane matrix displayed superhydrophilicity and underwater superoleophobicity, effectively separating oil-in-water mixtures and emulsions. Moreover, BiOCl was effectively utilized to assess organic pollutant adsorption and degradation through photocatalysis. In addition, the membrane exhibited exceptional recyclability and withstood harsh conditions, contributing to its mechanical stability. The numerous advantages, enhance the effectiveness of BiOCl modified membrane in water pollution remediation.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114209"},"PeriodicalIF":7.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343724023406","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Polymeric membranes have garnered remarkable attention, attributed to the significant breakthrough in the filtration of oily wastewater. However, the major setbacks of pristine polymeric membranes include susceptibility to fouling and chemical instability. Addressing such issues, this work focusses in the modification of polymer membranes using a metal oxyhalide, such as Bismuth oxychloride (BiOCl). This modification not only enhances water purification capabilities but also strengthens the membrane, protecting it from environmental deterioration and extending its lifespan. BiOCl was integrated into an electrospun pristine nanofibrous polymeric membrane using hydrothermal technique. The synthesized membrane matrix displayed superhydrophilicity and underwater superoleophobicity, effectively separating oil-in-water mixtures and emulsions. Moreover, BiOCl was effectively utilized to assess organic pollutant adsorption and degradation through photocatalysis. In addition, the membrane exhibited exceptional recyclability and withstood harsh conditions, contributing to its mechanical stability. The numerous advantages, enhance the effectiveness of BiOCl modified membrane in water pollution remediation.
期刊介绍:
The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.