{"title":"Stabbing boxes with finitely many axis-parallel lines and flats","authors":"Sutanoya Chakraborty, Arijit Ghosh, Soumi Nandi","doi":"10.1016/j.disc.2024.114269","DOIUrl":null,"url":null,"abstract":"<div><div>In this short note, we provide the necessary and sufficient condition for an infinite collection of axis-parallel boxes in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> to be pierceable by finitely many axis-parallel <em>k</em>-flats, where <span><math><mn>0</mn><mo>≤</mo><mi>k</mi><mo><</mo><mi>d</mi></math></span>. We also consider <em>colorful</em> generalizations of the above result and establish their feasibility. The problem considered in this paper is an infinite variant of the Hadwiger-Debrunner <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>-problem.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 2","pages":"Article 114269"},"PeriodicalIF":0.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X2400400X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this short note, we provide the necessary and sufficient condition for an infinite collection of axis-parallel boxes in to be pierceable by finitely many axis-parallel k-flats, where . We also consider colorful generalizations of the above result and establish their feasibility. The problem considered in this paper is an infinite variant of the Hadwiger-Debrunner -problem.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.